
CSE 501 Project Report

Interprocedural Analysis in ZPL

A.J. Bernheim Doug Zongker

March 14, 1997

We have implemented an interprocedural analysis framework for the ZPL compiler. ZPL is

a high-level, machine-independent, implicitly-parallel, array-based programming language geared

toward scienti�c applications. ZPL is intended to replace languages such as Fortran and C for

scienti�c computation [Sny96].

The current compiler has some interprocedural optimization, but no uni�ed, accessible frame-

work for adding new optimizations. We used our framework to implement alias analysis, parameter

in-out analysis and the accompanying transformations. Several ZPL programs have been used to

evaluate the success of our analyses and transformation. Since ZPL is a machine-independent

language we have timed the ZPL programs on �ve di�erent machines: the DEC Alpha, the Intel

Paragon, the IBM SP/2 and the Cray T3D and T3E. For ZPL programs expected to bene�t from

our transformation we have achieved respectable speedups on all the machines.

The framework has also been designed with the goal of making implementing client analyses

as easy as possible. This will encourage others to extend the compiler to include additional

interprocedural optimizations.

Section 1 describes our framework, while section 2 outlines alias and parameter in/out analysis.

Section 3 presents our transformation is and Section 4 evaluates our framework qualitatively and

summarize the results of our transformation. Finally, Section 5 o�ers our conclusions.

1 Framework

Our framework facilitates top-down interprocedural analyses. It provides an abstraction for the

process of traversing over the call graph, allowing the client code to annotate the AST at each

function node. The framework detects cycles in the call graph, corresponding to recursion in the

program, and uses the client code to iteratively �nd a �xpoint. The client is responsible for any

1

� Main framework procedures called by client code

void ip_initialize (module_t *mod)

void * ip_analyze (function_t *f, void *incontext, analysis_info *a)

analysis_info is a structure containing function pointers to the callbacks comprising the
client: the main intraprocedural analysis function, and utility functions for merging, and
comparing contexts.

� Annotating the call graph

void add_annotation (function_t *f, char *id, void *data)

void *lookup_annotation (function_t *f, char *id)

void delete_annotation (function_t *f, char *id, int freedata)

� Traversing f's call graph, calling back to client for each callsite

void traverse_callsites (function_t *f, void (*c)(expr_t *, statement_t *))

(module_t, function_t, expr_t and statement_t are all structures de�ned by the ZPL
compiler.)

Figure 1: Framework procedures called by the client.

intraprocedural analysis necessary, making callbacks to our framework for each call site. This

structure is loosely based on the Vortex interprocedural analysis framework of [CDG96].

Two client de�ned structures are used for interprocedural analysis with our framework. The

context structure built at each callsite contains the information to be passed to the analysis of the

called function. To store the results of an analysis a client de�nes an annotation structure. The

framework maintains a list of client annotation structures for each procedure. This allows new

client analyses to be added without having to change the format of the AST's procedure nodes,

which would necessitate rebuilding the entire ZPL compiler. Each annotation is named by a client-

speci�ed identi�er string. A single client can add multiple annotations if desired. The framework

provides functions to lookup, add, and delete annotations as necessary. The framework itself also

uses this annotation mechanism to store internal information related to detecting recursive calls.

The client begins analysis by calling the framework's ip_initialize() function to clear any

internal annotations already present for the module. The client then calls the ip_analyze()

function, passing in a pointer to the entry procedure of the ZPL program, an initial context, and an

analysis_info structure containing pointers to the client functions to be used for intraprocedural

analysis and context manipulation. ip_analyze() is the main function of the framework; it

is responsible for detecting and handling recursion. ip_analyze() �rst determines if the ZPL

procedure is a library or external function, since these types of procedures can not be analyzed by

2

the client. Next, it checks to see if the ZPL procedure is currently in the midst of analysis (i.e.,

the current callback is a recursive call). If not, ip_analyze()marks the procedure as being under

evaluation, stores a copy of the evaluation context, and passes control to the client callback.

If the framework detects recursion (the ZPL procedure is already undergoing analysis), then

the framework must determine whether a �xpoint has been reached. It compares (using a client-

provided as_general_as() function) the context that came in with the current call with the

cached copy of the context that the procedure is already being evaluated with. If the cached

context is as general as the new context, a �xpoint has been reached and the framework does not

need to analyze the procedure any further. If not, then the new context contains new information.

The two contexts are then merged (using a client-provided merge()) function, and the client

callback is called with the merged context as its input.

For this scheme to work, the client callback must have a monotonic action on contexts. We view

the space of possible contexts as a lattice, with the client's as_general_as() function forming the

v relation. The client must ensure that when a procedure is analyzed recursively, the incoming

context for the inner analysis is as general as (lower in the lattice than) the context of the outer

analysis. There must also exist a bottom element of the lattice which is as general as any other

element. If these conditions hold, then the analysis for recursive calls will always reach a �xpoint

and terminate.

The framework also provides the traverse_callsites() function to simplify a client's tra-

versal of a ZPL procedure looking for callsites. traverse_callsites() takes a ZPL procedure

(a pointer to the corresponding procedure node in the AST) and a C function to be called at

each callsite in that procedure. The C function is passed the current expression and containing

statement as parameters. It calls the framework for the called procedure after constructing any

necessary context for that callsite. traverse_callsites() allows the client to ignore the details

of locating callsites within the AST for a ZPL procedure.

2 Analysis

We have implemented one client using this framework: alias analysis. Using the results of alias

analysis, we then perform parameter in/out analysis. These results are used to determine when

a parameter can be safely passed by reference. Currently the ZPL development group believes

that in the presence of heavy aliasing the compiler may produce incorrect code due to an overly

optimistic temporary insertion procedure. Accurate alias analysis would be useful not only for our

in/out analysis, but also in improve correctness in other areas of the compiler.

2.1 Alias Analysis

Our alias analysis annotates each procedure with sets of variables (both globals and locals of

ancestors in the call graph, one per formal) that can be passed in for each parameter. To implement

3

P

x

A

B

i

y

y

A

y

"alias"

alias
lists

function_t node

annotations

formal parameters

Figure 2: Structure of alias annotation for sample function P with formals x and y.

alias analysis as a client within the framework we �rst de�ned data structures for our annotations

and contexts. For this analysis, the annotations (information stored by the client for each function)

and contexts (information constructed to pass to a procedure call) use the same data structure:

a set of variables that could be passed in for each formal. We provide the required functions for

merging contexts, comparing context generality, and performing intraprocedural analysis. For alias

analysis the merge() function performs per-parameter set union and as_general_as() function

computes per-parameter superset: A v B if each set in A is a superset of the corresponding set

in B. We took advantage of the framework's traverse_callsites() procedure to �nd callsites

within ZPL procedures.

Our alias_callback() function which handles intraprocedural analysis �rst determines if an

annotation from a previous evaluation of the procedure already exists. If no annotation exists, an

annotation with an empty alias set for each formal is built. The annotation (whether it was just

created or comes from a previous analysis of this procedure) is updated by merging it with the

incoming context which contains, for each parameter, the set of variables that could be passed in

at the current callsite. Figure 2 shows a sample annotation structure for alias analysis.

After the annotation for the current ZPL procedure has been computed, the function body

is traversed using traverse_callsites(). Each callsite in the ZPL procedure is processed by

the handle_callsite() function. This function looks up each actual which is a single variable

(excluding expressions and constants) in the calling procedure's context and constructs the set of

variables the actual could be aliased to. These sets form the calling context that is used to analyze

the called ZPL procedure.

Our current implementation of alias analysis does some reevaluation of procedures that is

4

� Main function that issues �rst call to framework

static void do_module (module_t *mod);

� Callback from framework for each function

static void * alias_callback (function_t *f, void *incon);

� Callback from traverse_callsite() to construct calling contexts

static void handle_callsite (expr_t *, statement_t *);

� Utility functions required by framework to manipulate contexts.

static void * alias_merge (void *, void *);

static int alias_as_general_as (void *, void *);

Figure 3: Client procedures for alias analysis.

strictly not necessary. This could be avoided by detecting when the current context used to

evaluate a procedure is subsumed by the set of aliases already known for the procedure's formals.

2.2 Parameter In/Out Analysis

Our parameter in/out analysis determines when the contents of a parameter can be changed by

a ZPL procedure. Passing large arrays is common in ZPL, so using in/out analysis to determine

when a pass-by-value parameter can safely be changed to pass-by-reference could lead to large

savings by eliminating the time needed for copying and the memory space for the temporary. Since

formal procedure parameters in the language default to call-by-value, we expect unnecessary value

parameters to appear frequently.

Parameter in/out analysis utilizes the information gathered in alias analysis to determine if a

parameter can be passed by reference. A parameter can not be passed by reference if:

1. The formal parameter is assigned to in the callee procedure, or

2. The formal parameter is passed by reference from the callee procedure, or

3. A global in the set of variables that the callee's formal parameter could be aliased to is

assigned to in the callee.

If none of these three types of possible assignments occur for a formal parameter, the parameter

can be passed by reference without a�ecting the program's semantics.

With alias analysis already computed, parameter in/out analysis becomes an intraprocedural

analysis that only needs to access the annotations left by alias analysis. Therefore the parameter

5

in/out analysis visits each procedure in the program once, and does not need to use the framework

to traverse the call graph. However, parameter in/out analysis still uses the annotation utility

functions provided by the framework to retrieve the alias annotations for each procedure. The

client code for parameter in/out analysis consists of three C functions, transform_varables(),

find_assigned_s() and find_assigned_e().

transform_varables() is the main function for parameter in/out analysis. For each ZPL

procedure, it �rst determines the set of variables that are assigned to within the procedure using

find_assigned_s() and find_assigned_e(). These two functions traverse a procedure's state-

ments and expressions, looking for places where a variable's value could be changed. Variables

could change when they appear on the left side of an assignment expression, when they are passed

by reference to other procedures, or when they appear in a wrap, reflect, or flood statements

(these are ZPL-speci�c constructs for dealing with arrays).

Once the set of variables possibly modi�ed within the ZPL procedure being analyzed has been

determined, transform_varables() checks each formal parameter passed by value to determine

if the parameter can be passed by reference using the three rules stated previously.

3 Transformation

Our transformation is conceptually simple. When parameter in/out analysis determines that

a formal parameter can be passed by reference, we change the subclass of the parameter from

SC_VALUE to SC_REFER, essentially adding the var keyword to the formal parameter declaration.

Since our optimization pass runs before the compiler's temporary insertion pass, this change

prevents the compiler from inserting a temporary.

There is a complication introduced by the fact that it is not legal in ZPL to pass an expression

by reference. Whenever we change a parameter to pass-by-reference, we must insert temporaries

at every callsite where the actual for that parameter is not a single variable|the temporary

can then be passed by reference. This essentially undoes our transformation at that particular

callsite. To save unnecessary work, we have an additional criterion for changing a parameter to

pass-by-reference: there must be at least one callsite where a temporary is not needed.

4 Results

We evaluate the success of our analyses and transformation by measuring the impact of the

optimization on compilation and execution times. Also, since the goal of implementing the analysis

with a framework/client model was to facilitate the development of additional interprocedural

analyses, we include some evaluations of the framework interface made by members of the ZPL

team.

6

Compilation Time
Benchmark Unoptimized (s) Optimized (s) Slowdown

embar 0.200 0.217 8.5%
�bro 9.617 22.333 132.2%
frac 0.183 0.150 -19.1%
pde1 0.250 0.267 6.8%
sp 23.450 24.333 3.7%
spuv 23.383 23.733 1.4%
test3 0.067 0.067 0.0%
zray 0.567 0.717 26.4%

Table 1: Compilation times of ZPL programs (in CPU seconds) with and without our optimization:
alias analysis, parameter in/out analysis, and transformation.

4.1 Quantitative Evaluation

We are currently using several ZPL programs to evaluate the e�ects of our optimization. Our

optimization only has the potential to improve performance when parameters are passed to pro-

cedures, so we have focused on �ve programs that we expect to bene�t from our transformation.

However, to validate the correctness of our analyses and transformation we have also run the

compiler on several other benchmark programs that should not be altered by the transformation

pass. For these types of programs we do not expect to see any signi�cant speedup or slowdown,

indicating that our optimization is not negatively impacting programs that can not be improved

by our transformation. Two of these programs, sp and embar are included in our results.

Eight programs comprise our benchmark set for timing evaluation: embar and sp are bench-

marks for which we expect no improvement|embar has no opportunities for optimization, and

sp comes from the ZPL group's standard benchmark set, and so has already been highly hand-

optimized (including our transformation). pde1 has a few parameters that can be transformed,

but they are only in the initialization code, so we expect to see little speedup. spuv is sp with the

hand-optimization undone. test3 is a tiny program contrived especially to show o� our optimiz-

ation. frac, fibro, and zray are programs outside the ZPL benchmark set that we expect will

bene�t from the optimization.

Table 1 summarizes the results for compilation time on a DEC Alpha. It is interesting to

note that while our pass itself takes little time, the temporaries it inserts can greatly a�ect the

running time of a later pass called contraction. This pass attempts to determine which temporaries

are unnecessary and remove them. It is this contraction pass which produces the large compiler

slowdowns on the fibro and zray benchmarks. Since the temporaries inserted by our pass are

always necessary (the program is not legal without them), compiler performance could perhaps

be improved in the future by setting a
ag on our temporaries that contraction can check for,

enabling it to skip over our temporaries without further analysis.

7

-2
0

0
20

40
60

80

%
 s

pe
ed

up

embar sp pde1 spuv fibro frac zray test3

alpha
paragon
sp2
t3e
t3d

Benchmark Optimization Speedup

Figure 4:

8

Figure 4 shows the optimization speedup attained on the DEC Alpha, a sequential machine,

and four parallel machines: the Intel Paragon, the IBM SP/2, and the Cray T3D and T3E. A

complete listing of execution results is located in Appendix A. Recall that for embar and sp

speedup is not expected. We include these two programs to validate that our optimization is not

grossly harming programs that are not expected to bene�t from our transformation.

As expected, we see moderate (5{15%) speedups on pde1, spuv and fibro and larger speedups

for frac, zray and test3, the programs that frequently pass large arrays by value.

4.2 Qualitative Evaluation

To provide a qualitative evaluation of the framework, we presented it at a ZPL group meeting

and collected feedback. Also a member of the ZPL group is implementing an interprocedural

analysis using the framework. The comments we have received outline directions for future work

and highlight areas where we have been successful in easing the di�culty of implementing an

interprocedural analysis.

In general, the feedback on the framework has been very positive. The group was pleased

that the framework, \takes out the hardest part of interprocedural analysis which is handling the

recursion." They also observed that traverse_callsites() handles the common case of �nding

callsites in procedures.

Our volunteer implementer re-wrote the basic part of an existing analysis in about an hour, and

commented that, although it would probably take over an hour, writing an analysis from scratch

would be much easier with our framework. He felt that the main advantage of the framework was

that rather than debugging six di�erent analyses, if all of them were written with our framework,

potentially only one piece of code would have to be debugged (if the clients of the framework were

correct).

His main suggestion for future work was extending the framework to hide statement and ex-

pression traversal from the user. Generic routines (traverse_expression(), traverse_stmt())

are already provided by the compiler but they are clumsy to use because they do not know about

contexts.

5 Conclusion

We have implemented an interprocedural framework for the ZPL compiler that facilitates imple-

menting client analyses. We have also added client code that performs alias and parameter in/out

analysis. We use parameter in/out analysis to change formal parameters to call by reference when

possible.

We believe that parameter in/out analysis is a valuable addition to the compiler. Naive pro-

grammers may not understand the advantage of passing parameters by reference and since ZPL

defaults to call by value, these programs have the potential to bene�t from our transformation.

9

Our analysis allows users to use the type of parameter passing as documentation, using the var

tag only when semantically appropriate rather than as a way to improve performance.

The ZPL group is very interested in our framework. The framework not only eases the process

of writing an interprocedural analysis, but also leads to more structured and readable client

analyses.

We are pleased with the results from our optimization and feel our framework will be a useful

tool for implementing future interprocedural analyses in the ZPL compiler.

6 Acknowledgments

We would like to thank all members of the ZPL Development team for their support and enthusiasm

about this project. Special thanks go to Brad Chamberlain for his suggestions and debugging help

throughout the project and to Sung-Eun Choi for running our test programs on the parallel

machines. We would also like to thank E. Christopher Lewis and Jason Secosky for providing ZPL

test programs. Finally, thanks to Professor Larry Snyder for his support and encouragement of

the project from the very beginning.

References

[CDG96] Craig Chambers, Je�rey Dean, and David Grove. Frameworks for intra- and inter-

procedural data
ow analysis. Technical Report UW-CSE-TR 96-11-02, Department of

Computer Science and Engineering, University of Washington, 1996.

[Lin96] Calvin Lin. ZPL Language Reference Manual. Department of Computer Sciences, Uni-

versity of Texas at Austin, Austin, TX, October 1996. Version 1.0.

[Sny96] Lawrence Snyder. A ZPL Programming Guide. Department of Computer Science and

Engineering, University of Washington, Seattle, WA, October 1996. Version 4.2.

10

A Execution Times

Execution Time
Benchmark Unoptimized (s) Optimized (s) Speedup

frac 44.206 38.987 11.8 %
�bro 1.701 1.547 9.1 %
test3 4.081 1.513 62.9 %
pde1 73.946 66.207 10.5%
sp 78.443 77.826 0.8 %
spuv 78.612 72.680 7.5 %
zray 33.323 18.598 44.2 %
embar 6.513 6.523 -0.1%

Table 2: Execution times on a DEC Alpha in CPU seconds with and without our optimization:
alias analysis, parameter in/out analysis, and transformation. The cpu is a 21064.

Execution Time
Benchmark Unoptimized (s) Optimized (s) Speedup

frac 13.437 12.546 6.6%
�bro - - -
test3 1.385 0.382 72.4%
pde1 42.948 43.284 -0.8 %
sp 49.904 50.203 -0.6%
spuv 50.099 50.203 -0.2%
zray 44.932 29.457 34.4%
embar 7.823 7.813 0.1%

Table 3: Execution times on the Cray T3D in CPU seconds with and without our optimization:
alias analysis, parameter in/out analysis, and transformation. The processors are DEC Alpha
21064s, 150 MHz, dual-issue, with timer granularity 150 ns. It is located at the Arctic Region
Supercomputing Center, Fairbanks, AK. Note we were not able to run �bro on the T3D.

11

Execution Time
Benchmark Unoptimized (s) Optimized (s) Speedup

frac 12.498 12.430 0.5 %
�bro 28.589 28.633 -0.2%
test3 0.605 0.307 49.3%
pde1 27.351 28.399 -3.8%
sp 34.203 34.306 -0.3%
spuv 35.005 34.363 1.8%
zray 26.220 13.284 49.3%
embar 4.605 4.626 -0.5%

Table 4: Execution times on the Cray T3E in CPU seconds with and without our optimization:
alias analysis, parameter in/out analysis, and transformation. The processors are DEC Alpha
21164s, 300 MHz, quad-issue, with a clock register that is very accurate in ns. It is located at the
San Diego Supercomputer Center, San Diego, CA.

Execution Time
Benchmark Unoptimized (s) Optimized (s) Speedup

frac 127.881 63.562 50.3 %
�bro 348.755 340.302 2.4 %
test3 5.092 1.757 65.5%
pde1 113.120 113.130 -0.01 %
sp 122.322 117.206 4.2%
spuv 122.769 122.450 0.3%
zray 121.619 78.435 35.5%
embar 13.499 13.537 -0.3%

Table 5: Execution times on the Intel Paragon in CPU seconds with and without our optimization:
alias analysis, parameter in/out analysis, and transformation. The processors are Intel i860 XPs,
50 Mhz, quad issue with timer granularity 100ns. It is located at the Dept. of CSE, University
of Washington, Seattle, WA.

12

Execution Time
Benchmark Unoptimized (s) Optimized (s) Speedup

frac 20.371 16.710 18.0%
�bro 32.551 30.618 5.9%
test3 2.040 0.619 69.6%
pde1 30.499 27.380 10.2 %
sp 37.214 25.953 30.3 %
spuv 27.916 23.827 14.6 %
zray 31.476 25.021 20.5%
embar 5.896 6.494 -10.1%

Table 6: Execution times on the IBM SP/2 in CPU seconds with and without our optimization:
alias analysis, parameter in/out analysis, and transformation. The processors are RS/6000s, 66.7
MHz, quad issue with a clock register that is very accurate in ns. It is located at the Cornell
Theory Center, Ithaca, NY.

13

