
Vaguely Islamic Aperiodic Patterns:

CSE 558 Project 1 Final Report

AJ Bernheim Craig Kaplan Doug Zongker

May 11, 1997

1 Problem Statement

Given an Islamic tiling on a periodic lattice, we want to create an aperiodic version of the tiling

that preserves its visual appearance. We would like the resulting tiling to consist of the same basic

polygons, but be aperiodic.

2 Di�cult Aspects of the Problem

Given an arbitrary Islamic pattern it is not immediately apparent how to create an aperiodic

version. For example, consider the Islamic pattern in Figure 1. What set of aperiodic tiles

should be used to generate an aperiodic version? The pattern consists of three polygonal shapes:

six-pointed stars, squares, and 
attened rhombs; how should these polygons be placed onto the

aperiodic tiles. Which polygons are crucial to the visual appearance of the tiling and which can

be left out or modi�ed if necessary?

For a particular pattern it may be possible to answer some of these questions using the general

characteristics of patterns produced by the di�erent aperiodic tile sets. For instance, Penrose

rhombs produce patterns with a visual appearance of �ve-fold rotational symmetry while patterns

using Amman rhombs have the appearance of eight-fold rotational symmetry. Figure 2 is an

aperiodic design inspired by Figure 1 using the Penrose rhombs. The aperiodic version contains

squares, 
attened rhombs and �ve-pointed stars instead of the six-pointed stars of the original

version, but still captures the 
avor of Figure 1.

Thus, determining the appropriate tile set and decorations can sometimes be done by inspec-

tion, in general we know of no clear process for creating an aperiodic tiling reminiscent of a

particular Islamic pattern.

1



Figure 1: An Islamic design from [1].

2



Figure 2: A tiling inspired by Figure 1, using Penrose rhombs.

3 Our Approach

In order to explore the set of possible aperiodic patterns and gain intuition about creating Islamic

style aperiodic patterns, we implemented a system that allows the user to take tiles from various

aperiodic tile sets and decorate them with lines and polygons. There are two major software

components: the editor and the tiler (see Figure 3).

decoration
editor

tile
programs

tiler

tiling types

X window

PostScript

Figure 3: Block diagram of the system.

Each tiling type implemented has methods for giving information to the editor and the tiler.

The editor needs to get the basic shape of the tile's outline from the tiling type. Each tile is

represented in a standardized coordinate system convenient for that tile. The editor generates a

list of instructions for drawing each type of tile (both the tile outline and the user's decoration)

of the tiling.

3



The tiling type provides a list of tiles to the tiler. Each tile in the list has a transformation

matrix mapping it from the tile's standard coordinate system to some location in the plane. The

whole list of tiles covers the unit square [�0:5; 0:5]� [�0:5; 0:5]. To draw the decorated tiling, the

tiler iterates through this list. For each item in the list, it executes the tile-drawing program from

the editor under the appropriate transformation matrix. Figure 4 illustrates this process.

The major di�culty in implementing this architecture was the generation of the tile list to

cover the unit square. This was accomplished through de
ation. A slider in the tiler window

controls the number of iterations of de
ation. Each tile provides an initial list of tiles which covers

the desired square.

One de
ation iteration consists of:

� Replacing each tile in the current list with a set of smaller tiles. This can be done by com-

puting each new tile's transform matrix relative to the parent tile in the standard coordinate

system, and composing this matrix with the parent tile's current transform. The child tiles

must completely cover the parent tile (so that we preserve the invariant that the square is

covered). They can extend outside the parent tile; see the next step.

� Eliminating duplicate tiles. Some tiling types, such as the Penrose kites and darts, break a

parent into child half-tiles, then join the half-tiles to make the full child tiles. Our imple-

mentation has each parent generate a full tile (which extend outside the boundary of the

parent), so a child tile lying on the boundary between two parents will be generated by both

of them. We eliminate these by establishing an order on transformation matrices, sorting

them, and checking adjacent pairs in the list to see if they are the same.

� Pruning tiles which lie outside the square. Since the de
ation process leads to exponentially

increasing number of tiles, we want to limit this as much as possible by throwing away those

tiles that lie outside the square and will not contribute to the �nal picture.

Figure 5 illustrates successive iterations of this process on the Penrose kites and darts tile set.

Since the tile list only needs to be reconstructed when the iterations slider changes, we can

cache it to provide quick redraws when the user edits a tile.

Figure 6 shows designs created with the tool.

4 Future Work

Our tool is very general|it allows the user to create arbitrary decorations on the provided sets

of aperiodic tiles. In a sense, this is a disadvantage. The user interface does not impose any

constraints on the set of possible designs. As a result, it is potentially di�cult to discover the

subset of those designs that �t our intuitive notion of Islamic pattern. What is needed is a set of

constraints in the user interface to guide the user in creating Islamic designs. At this time, it is

4



KITE:

begin 0

setcolour 0

moveto -0.951063 0.309058

lineto -0.000029 0.000049

lineto 0.951005 0.309058

lineto -0.000029 1.618043

lineto -0.951063 0.309058

begin 1

setcolour 1

moveto 0.391021 0.816867

lineto -0.187733 0.660447

<end>

DART:

begin 0

setcolour 0

moveto -0.951063 1.309030

lineto -0.000029 0.000044

lineto 0.951005 1.309030

lineto -0.000029 1.000020

lineto -0.951063 1.309030

begin 1

fillcolour 5

polybegin false

polypoint -0.148628 0.466833

polypoint -0.328511 0.850062

polypoint -0.000029 1.000020

polyend

<end>

(c)

Figure 4: (a) A sample editor window. (b) The tile-drawing programs generated. (c) The tiling
produced by executing the programs repeatedly with di�erent transform matrices.

5



0 iterations 1 iteration 2 iterations

3 iterations 4 iterations 5 iterations

6 iterations

Figure 5: Results of successive iterations of de
ation on the Penrose kites and darts patterns. The
e�ect of throwing away tiles outside the square can be seen as the tiles get smaller.

6



(a) (b)

(c) (d)

Figure 6: Some sample images created with the tool. The underlying tile sets are: (a) Amman
rhombs, (b) and (d) Penrose rhombs, and (c) Penrose kites and darts.

7



unclear what these constraints should be. More experience with the existing tool would probably

point the way to some heuristics that could be implemented.

Another shortcoming of our tool is that none of the currently implemented aperiodic tile sets

contains a tile with more than four sides. We know of no aperiodic tile set that contains a

convex tile of more than four sides and can tile an area through de
ation. We believe that adding

polygons with more sides would allow us to create a wider variety of Islamic designs, because so

many existing designs are based on hexagons, octagons, and dodecagons [1].

Finally, we have not explored the possibility of implementing the grid method for creating

quasiperiodic tilings, as described in lecture. It may be possible to create a large class of aperiodic

designs simply by applying this simple transformation to any number of well-known tilings. Un-

fortunately, our current tiler relies on de
ation to produce sets of tiles covering the unit square.

While the grid method is conceptually simple and easy describe, determining the exact set of tiles

produced and covering an area with those tiles is nontrivial.

References

[1] J. Bourgoin. Arabic Geometrical Pattern & Design. Dover Publications, New York, 1973.

[2] Branko Gr�unbaum and G. C. Shepard. Tilings and Patterns. W. H. Freeman, 1987.

8


