
Refraction Matting

Doug Zongker

CSE 558

June 9, 1998

1 Problem

Matting techniques have been used for years in industry to create special e�ects shots. This
allows a sequence be �lmed in studios, and have the action transferred to environments that are
expensive, dangerous or impossible for the models and/or actors to work in. Still matting to create
composite photographs is useful for the same reason. The creation of a matte (more properly called
a holdout matte) depends on being able to accurately separate the foreground (which we will call
the object) from the background of the �lmed scene. The object can then be composited onto a
new background image.

Research on this topic in the computer graphics community has been slow because of tightly held
patents covering many of the basic techniques used in the industry. With the recent lapse of
many of these patents, some new work on this problem has begin to emerge. The techniques
we've encountered, though, all share the problem that they fail to correctly handle foreground
objects which change the path of rays coming from the background image. Ordinary transparency
is handled, but refraction or re
ection by the foreground object is lost. This paper describes a
technique for augmenting mattes with information so that these e�ects can be accurately recreated.

2 Related work

Although matte creation predates computer graphics, it can be described today in the language of
Porter and Du�'s compositing algebra [1]. The matte created is the alpha channel in their terms.
Images with alpha have not only an RGB value at each pixel, but also a value signifying how much
of the pixel is covered by that color. The matting process creates, from an image or set of images
of an object and background(s), a new image containing the color and alpha of the object alone.

Smith and Blinn [2] cast the matting problem in the Porter-Du� algebra, and show it to be un-
derspeci�ed. They discuss techniques used in the industry (which all involve making assumptions
about the colors of the foreground object so that the equations become solvable). They then intro-
duce a novel technique, which involves shooting the object against two di�erent backgrounds, and
\triangulating" to solve for the object's color and alpha without the need for such assumptions.

1



confusion map

foreground objectalpha mask

background

image

}
Figure 1 Conceptual model of a foreground object, showing separation into a confusion map and an
alpha mask.

The work in this paper is inspired by the use of structured light to perform range scanning. One
method is to sweep a plane of light across the object to be scanned, while imaging the object from
another angle. By knowing the camera parameters and the position of the plane of light, the 3D
position of illuminated points can be determined. A series of these pro�le images can be assembled
into a 3D model of the surface. This requires a number of images equal to some dimension of the
mesh obtained. To reduce the number of required images, the plane of light can be replaced with
a number of planes. The illumination pattern changes between each image, in such a way that
the pattern of light and dark for a given plane is unique to that plane. In this way, the number of
images can be reduced to being logarithmic in the mesh dimension.

3 Approach

We begin by considering the foreground object to be in two parts: a confusion map and an alpha
mask (Figure 1. The confusion map is a surjective mapping of pixels on the background image to
pixels in the foreground image. It captures the light-ray bending properties of the object, which
includes both refraction for transparent objects and re
ection for mirrored surfaces. (We will
ignore for the moment the complication of the object re
ecting or refracting light that doesn't
come from the background image into the camera.) Note that the representation of the map as
being from pixels to pixels �xes the depth of the background and foreground objects relative to
the camera. The second part, the alpha mask, is an ordinary RGB� image|it can mix its own
color with color from the remapped background image to produce the �nal result.

The foreground will be extracted from an ordered series of images made of the object in front
of di�erent structured backgrounds. The �rst two images are made with backgrounds of two
di�erent solid colors|we apply the two-color matting technique to extract the alpha mask. The
remaining backgrounds are patterns of the two colors, designed so that the sequence of colors
seen on a particular background pixel is unique to that pixel. This allows us to determine which
background pixel can be seen through any given foreground pixel.

Throughout this paper we will be using green and magenta as our background colors. This pair
of colors has the following advantages:

2



1. They are di�erent in each color channel (unlike, for instance, red and magenta). This will
become important when we discuss a re�nement for handling colored transparent objects.

2. They di�er \maximally" in each channel. That is, for each of red, blue, and green, one
has none of that primary and the other has the maximum amount. This eases the task of
distinguishing the colors in the presence of noise.

3. Of the four pairs satisfying the �rst two criteria (green/magenta, red/cyan, blue/yellow, and
black/white), they are the two that are most similar in intensity. This is convenient for
taking images of real objects with �lm, since it obviates the need to change camera exposure
and/or aperture when the background pattern changes.

3.1 Extracting the alpha mask

When the background is a solid color, the confusion map has no e�ect, so we can treat it is if
it were absent. We apply the triangulation technique from Smith and Blinn [2] to obtain the
foreground object color and alpha. Theorem 3 of that paper derives the object's alpha at a pixel
as

�o = 1�
(Rf1 �Rf2) + (Gf1 �Gf2) + (Bf1 �Bf2)

(Rk1 �Rk2) + (Gk1 �Gk2) + (Bk1 �Bk2)
(1)

Here k1 and k2 are the background colors, and f1 and f2 are the colors of the object pixel seen
against those backgrounds. This is not the most general formulation of triangulation given in the
paper|it requires that the sums of the primaries for the two background colors di�er. Smith and
Blinn also give an equation that solves for alpha with any two di�erent background colors, but it
is more computationally expensive. For our purposes, this equation su�ces.

Note that the triangulation technique begins by assuming that the color seen is computed as a
weighted sum of the foreground and background colors. We are dealing with �nite backgrounds,
though, and we could encounter an object that makes things outside the background image visible
to the camera (via re
ection or refraction). This is illustrated in Figure 2. Since this light doesn't
change when the background is changed, it will be perceived as originating from the foreground
object. This will happen both when we are looking at an opaque part of the object (the red ray
in the �gure), and when the object is re
ecting or refracting a ray that doesn't come from the
background image (the green rays). A more accurate description of the compositing process is
that it allows us not to place the object in an arbitrary scene, but that it allows us to recreate the
original scene with a di�erent backdrop B. Other objects in the scene which may be visible can't
be changed through compositing.

3.1.1 Colored transparency

In this formulation of the problem, there is a single alpha value for each pixel of the foreground
image. However, this is not enough information to recreate the e�ects of a colored transparent
(or re
ective) object. For instance, a blue glass sphere would pass more blue light than red or
green light. To capture this, we calculate an alpha value for each channel by ignoring the other
two channels:

3



B

O

C

Figure 2 Foreground object O seen against background image B by camera C. Note that objects in
the scene other than the background are visible via re
ection and/or refraction. The color contributed by
both the green and red rays will be perceived as being part of the foreground object.

�r = 1�
Rf1 �Rf2

Rk1 �Rk2

�g = 1�
Gf1 �Gf2

Gk1 �Gk2

�b = 1�
Bf1 �Bf2

Bk1 �Bk2

These are the same as equation (1), but setting all the color components not under consideration
equal to zero. This leads to our �rst requirement for the background colors (listed above): that
they di�er in every channel. If the colors were the same in some channel then we could not solve
for the alpha of just that channel.

3.2 Extracting the confusion map

The confusion map speci�es, for each pixel in the foreground image, which background pixel is
seen through that pixel. We assume that the object is stationary relative to the background, so
that the map is the same in every image. We also assume that the map is the same for each color
channel. (It would be straightforward to extend this technique to computing a per-channel map,
but that would triple the already signi�cant number of images required.)

Our strategy to obtain this map will be to assign to each pixel in the background a unique binary
string, and then use the bits of each pixel's string to determine its color over a sequence of images.
By observing the pattern of color changes of an object pixel we can obtain a binary string, and
thus determine which background pixel was seen.

The �rst technique used will use a series of stripes to encode the row and column of the background
pixel as a binary number. Suppose that the background image is 2w � 2h pixels. We use w + h

images of stripes to encode the location of each pixel. Images with 2; 4; 8; : : : ; 2w vertical stripes
encode the column, and images of 2; 4; 8; : : : ; 2h horizontal stripes encode the row. We can think of
a pixel's overall string as being the concatenation of its row address with its column address. The
two colors magenta and green correspond to the bits 0 and 1, the bit position being determined
by which set of stripes is used. The 2-stripe image determines the most signi�cant bit of the row
or column location, the 2w-stripe (or 2h-stripe) image determining the least signi�cant bit. This
encoding is illustrated for a 16� 16 image in Figure 3.

4



0 1 0 1

row 5

0 0 01
column 4

Figure 3 Illustration of pixel color coding for location. Magenta represents a 0 bit, green a 1 bit.

In each of the w+h striped images, we must determine whether we are seeing a magenta or a green
background pixel through each foreground object pixel. To make this decision, we look at how the
foreground object pixel appeared when we knew the background pixel was magenta (the object
with the solid magenta background image) and how it appeared when we knew the background
pixel was green (the object against solid green). We calculate the L2 distance between the color
of the pixel against an unknown background pixel and each of these two known values, and decide
that the background color is the one corresponding to the smaller distance.

We can examine the consequences of this technique in the special case of an opaque foreground
pixel. Recall that this can happen both when we are really seeing a part of the foreground object,
as well as when the object is re
ecting or refracting a ray from outside the backdrop into the
camera. In this case the two L2 distances are equal, and the implementation arbitrarily chooses
magenta. This will happen for each stripe background, so the confusion map will map background
pixel (0; 0) to the foreground pixel. However, since no background at all will show through an
opaque foreground pixel, any entry in the confusion map would su�ce.

3.2.1 Improving the encoding

One disadvantage of the binary stripe technique is that it is relatively sensitive to registration
error. Consider the two center columns of a 256 � 256 image. The codes for these two columns
di�er in every bit: the left column code is 01111111, the right column code is 1000000. Slight
misregistrations which cause the wrong column to be read in some of the stripe images could lead
to taking some of the bits from the left column, and some from the right column. This can produce
an arbitrarily large error, since any bit string from 00000000 to 11111111 could be extracted.

It would improve matters if the codes for adjacent columns (and rows) were more similar, so that
a misregistration error would be less likely to cause a bit 
ip in the extracted code. Fortunately,
such codes exist. A Gray code is an ordering of the 2n n-bit strings such that each adjacent pair
di�ers in only one bit position. An example Gray code is given in Figure 4.

We can use a Gray code to reduce the likelihood of error, with no cost in acquiring additional

5



index binary code Gray code

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Figure 4 A 3-bit Gray code. Note that adjacent rows of the Gray code di�er in only one position,
unlike the binary code column.

images. If we are willing to use additional images, however, we can potentially reduce error even
more by encoding the position redundantly using an error-correcting code. A Hamming code, for
instance, allows correction of any single-bit error in 16 bits of data (enough to record position in
a 256 � 256 image) by sending an additional 5 check bits. Section 5 gives some results created
using Gray and/or Hamming codes.

4 Considerations for photography

Applying this process to rendered images is interesting, but somewhat academic since we could
create the confusion map and alpha mask directly from the 3D geometry necessary for rendering,
without having to repeatedly render the scene against di�erent backgrounds. To make this tech-
nique useful, we must be able to take pictures of real objects and perform the matting accurately
enough to make convincing composites.

To capture real data, we use a tripod-mounted camera to take pictures of the object in front of
a computer monitor displaying an appropriate backdrop. We can thus ensure that the relative
positions of camera, object, and background don't change from frame to frame. We place the
object close to the monitor, and use a small aperture in order to get both the object and the
background in focus at the same time. The �lm is developed and scanned to produce a PhotoCD
with 3072� 2048 images.

A number of e�ects introduce distortion and/or misregistration into the images obtained: the
background monitor is vertically 
at but slightly curved horizontally, the �lm plane is not ex-
actly parallel to the monitor, and the misalignment within the scanning process introduces some
translation of the camera center within the image plane. As a result, the region of interest (the
background square on the monitor with the object in front of it) is nonrectangular in the captured
image, and we must do some warping to obtain a clean image on which to run the above extraction
algorithms.

Since any warping will necessarily distort the appearance of the foreground object, we try to
minimize distortion by carefully aligning and aiming the camera. Whatever distortion remains is
countered with a simple quadrilateral warp. The backdrop contains four registration markers in a
rectangle around the colored background image. We know the positions of these markers on the

6



a
b

:
:

1-a
1-

b

b
:

1-
b

a
:

1-a

a : 1-a

b
:

1-
b

Figure 5 Illustration of the resampling process.

screen, and their position relative to the background image. We can locate these four markers with
subpixel accuracy in the photograph, and use them as the basis for a quadrilateral warp. For each
pixel in the 1024� 1024 background image on the screen, we determine where it maps to in the
photograph, and select the pixel covering that point. In this way we build a new 1024�1024 image
containing just the background square and the object in front of it. This process is illustrated in
Figure 5.

5 Results

The compositing operation is fast enough to render a 256�256 object at approximately 25 frames
per second. About half of each frame's time is devoted to evaluating the compositing equation, with
the other half being spent in moving bits to the frame bu�er. The compositing application allows
the foreground object to be dragged around over a background image. The speed of rendering
and the quality of the resulting images produce a very convincing e�ect of moving a transparent
physical object over a background image.

7



(a) (b)

Figure 6 Compositing a rendered magnifying glass: (a) without refraction, (b) with refraction.

Figure 6 shows the di�erence in realism that recreating refraction can make. The foreground
object is a convex lens mounted in an opaque red frame.

Figure 7 shows some other rendered objects composited on top of various backgrounds. All the
objects were rendered without antialiasing, so exactly one background pixel is seen through each
foreground pixel. The confusion map extraction produces a perfectly accurate result for these
objects. Parts (a) and (b) show the rendered magni�er with new backgrounds. Parts (c) and (d)
show how the confusion map can be used to capture both re
ection and refraction. Parts (d){(f)
show the use of per-channel alpha to perform �ltering of color.

Figure 8 shows results obtained using some alternate coding schemes. In each case, the object
was obtained by rendering using adaptive subsampling. This produces images more like those
obtained photographically|they have some blurring of �ne details, which makes the confusion
map extraction less clean. Note the errors at power-of-2 divisions of the image using binary
coding (Figure 8(a)), and the improvement produced by using Gray coding (Figure 8(c)). Using
Hamming check bits signi�cantly degrades image quality using both binary and Gray coding. The
likely explanation for this extremely poor \correction" is that the Hamming check bits, which are
parity checks for di�erent overlapping subsets of the data bits, correspond to images which have a
lot of high frequency energy (see Figure 9). These �ne details are the things preserved least well
by the photography (or antialiased rendering), so the error rates of transmitting the check bits is
signi�cantly higher than in the data bits. We could employ a di�erent error-correcting code that
generates lower-frequency images.

Figure 10 shows an object (a glass half full of water) extracted from photographs and composited
onto a new background. This shows the general e�ectiveness of the technique on real data. The
photographs were resampled as described above to create 1024 � 1024 images, which were then
averaged down to the 256� 256 images that the matting process was run on. Note that the water
correctly reverses the background image left-to-right. There are some problems with this image,
though:

1. The object, which was clear glass sitting on a white plastic base, is tinged blue. This

8



(a) (b) (c)

(d) (e) (f)

Figure 7 Composites of rendered objects: (a) & (b) a magnifying glass, (c) four mirrors surrounding
a glass sphere, (d) opaque, transparent, re
ective, and colored transparent boxes, and (e) & (f) colored
transparent spheres.

(a) (b) (c) (d)

Figure 8 Results of employing various location coding schemes with antialiased rendered images. (a) bi-
nary coding, (b) binary coding with Hamming correction, (c) Gray coding, (d) Gray coding with Hamming
correction.

9



(a) (b) (c) (d) (e)

Figure 9 Images of Hamming check bits for Gray-coded locations.

is probably a result of using tungsten �lm, which is more sensitive to blue light, under

uorescent lighting. We expect that a new set of pictures using more appropriate �lm would
correct this.

2. The area around the glass, which should be perfectly clear, appears dirty. The alpha is not
extracted correctly in these areas due to speckle noise in the background, which the alpha
equation assumes is a solid known color. Other authors have reported more accurate alpha
computation by photographing the solid color backgrounds with no object and using those
for comparison [3]. We could also envision a tool that lets objects be touched up by hand,
so that the erroneous alpha could be painted out of the object.

3. There are noticeable errors in the confusion map|note the checkerboarding e�ect on the di-
agonal lines visible through the lower right corner, and the horizontal streaks visible through-
out the area around the glass. This set of images uses binary coding of the background
pixels|images taken in the future should at least use the Gray code described above, or
possibly more advanced error-correction schemes.

6 Future work

While this technique produces good results, the number of images required is a major drawback. It
currently requires dlog

2
Ne+2 images, where N is the number of pixels in the background image.

Some of the enhancements discussed above (error-correcting bits, backgrounds without foreground
object) would require even more images. This large number of images probably precludes applying
the technique to video or �lm sequences. With just two backgrounds needed, one could imagine
�lming a sequence with a backdrop alternating between the two images, and using a method
like optical 
ow to interpolating the missing images. Extracting a 256 � 256 object with this
technique in this work, however, requires 18 images|interpolating across the 17 frames between
successive appearances of a given background would probably be hopelessly inaccurate. Motion
picture applications of this technique would therefore be limited to highly controlled, repeatable
shots, where the camera and object motion can be exactly replicated many times.

One way to reduce the number of images needed would be to transmit more bits per pixel per
image. We can imagine putting one stripe pattern in the red channel, another in the green
channel, and a third in the blue channel, giving a total of eight colors present in the background
image. While this is less robust than the current method, which needs only to distinguish between

10



Figure 10 A glass of water extracted from photographs composited over a painting.

two background colors, it cuts the number of images needed by two-thirds. This could be reduced
further by using more levels of each channel to encode multiple bits (four levels of red, for instance,
rather than two). In the limit, this technique approaches the gradient technique of Wolfman and
Werner [4].

Another approach would be to abandon the coding scheme entirely and apply more computer
vision techniques. The current method can (in theory) extract entirely arbitrary confusion maps,
but most objects have a confusion map with a lot of coherence that the current technique does
not take advantage of. We could attempt to estimate the confusion map by matching features in
the background with points in the composite image, and taking the confusion map as some sort
of smooth warp between those points.

References

[1] Thomas Porter and Tom Du�. Compositing digital images. In Computer Graphics (SIG-
GRAPH '84 Proceedings), pages 253{259, July 1984.

[2] Alvy Ray Smith and James F. Blinn. Blue screen matting. In SIGGRAPH 96 Conference
Proceedings, pages 259{268, August 1996.

[3] Steve Wolfman and Dawn Werner. Personal communication, 1998.

[4] Steve Wolfman and Dawn Werner. Low-cost extensions to the blue screen matting problem,
1998.

11


