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Abstract

A large number of algorithms have been proposed for feature subset selection.

Our experimental results show that the sequential forward oating selection (SFFS)

algorithm, proposed by Pudil et al., dominates the other algorithms tested. We study

the problem of choosing an optimal feature set for land use classi�cation based on

SAR satellite images using four di�erent texture models. Pooling features derived

from di�erent texture models, followed by a feature selection results in a substantial

improvement in the classi�cation accuracy. We also illustrate the dangers of using

feature selection in small sample size situations.

Keywords: feature selection, curse of dimensionality, genetic algorithm, node prun-

ing, texture models, SAR image classi�cation.
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1 Introduction

The problem of feature selection is de�ned as follows: given a set of candidate features,

select a subset that performs the best under some classi�cation system. This procedure

can reduce not only the cost of recognition by reducing the number of features that need

to be collected, but in some cases it can also provide a better classi�cation accuracy due to

�nite sample size e�ects [5]. The term feature selection is taken to refer to algorithms that

output a subset of the input feature set. More general methods that create new features

based on transformations or combinations of the original feature set are termed feature

extraction algorithms. This paper is concerened primarily with the former group.

There has been a resurgence of interest in applying feature selection methods due to

the large numbers of features encountered in the following types of problems:

1. Applications where data taken by multiple sensors are fused. Jain and Vailaya [6], for

instance, have merged both color and shape features to provide an improved retrieval

accuracy for a trademark image database.

2. Integration of multiple models, where the parameters from di�erent mathematical

models are pooled for the purpose of classi�cation, such as Solberg and Jain [16].

3. Data mining applications, where the goal is to recover the hidden relationships among

a large number of features, as in Punch et al. [11].

The goal of this paper is to illustrate the value of feature selection in combining features

from di�erent data models, and to demonstrate the potential di�culties of performing

feature selection in small sample size situations, due to the curse of dimensionality. We

present a taxonomy of feature selection algorithms. Several well-known and some recently

proposed feature selection algorithms have been implemented and tested. Based on these

results, the sequential forward oating selection (SFFS) method introduced in [10] has

been found to be extremely powerful. We have applied this method to a large data set,

created by pooling features from four di�erent texture models, in order to classify SAR

satellite images. Feature selection results on this dataset demonstrate (i) the existence of

the curse of dimensionality, and (ii) that combining features from di�erent texture models

leads to a better classi�cation accuracy than the performance of individual models. The

curse of dimensionality phenomenon is further investigated by performing feature selection
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on synthetic data sets of various sizes drawn from two Gaussian distributions [17], and

evaluating the quality of the selected subset versus the known optimal subset.

2 Feature Selection Algorithms

Let Y be the original set of features, with cardinality n. Let d represent the desired number

of features in the selected subset X, X � Y . Let the feature selection criterion function

for the set X be represented by J(X). Without any loss of generality, let us consider a

higher value of J to indicate a better feature subset. Since we are maximizing J(�), one

possible criterion function is (1� pe), where pe denotes the probability of error. The use of

probability of error as a criterion function makes feature selection dependent on the speci�c

classi�er used and the size of the training and test data sets. Formally, the problem of

feature selection is to �nd a subset X � Y such that jXj = d and

J(X) = max
Z�Y;jZj=d

J(Z):

An exhaustive approach to this problem would require examining all
�
n

d

�
possible d-subsets

of the feature set Y . The number of possibilities grows exponentially, making exhaustive

search impractical for even moderate values of n. Cover and Van Campenhout [1] showed

that no nonexhaustive sequential feature selection procedure can be guaranteed to produce

the optimal subset. They further showed that any ordering of the error probabilities of

each of the 2n feature subsets is possible.

A taxonomy of available feature selection algorithms into broad categories is presented

in Figure 1. We �rst divide methods into those based on statistical pattern recognition

(SPR) classi�cation techniques, and those using arti�cial neural networks (ANN). The SPR

category is then split into those guaranteed to �nd the optimal solution and those that may

result in a suboptimal feature set. The suboptimal methods are further divided into those

that store just one \current" feature subset and make modi�cations to it, versus those that

maintain a population of subsets. Another distinction is made between algorithms that

are deterministic, producing the same subset on a given problem every time, and those

that have a random element which could produce di�erent subsets on every run. Some

representative feature selection algorithms are listed beneath each leaf node in the tree.
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Figure 1: A taxonomy of feature selection algorithms.
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2.1 Deterministic, Single-Solution Methods

The �rst group of methods begin with a single solution (a feature subset) and iteratively

add or remove features until some termination criterion is met. These are also referred

to as \sequential" methods. These are the most commonly used methods for performing

feature selection. They can be divided into two categories, those that start with the empty

set and add features (the \bottom-up," or \forward" methods) and those that start with

the full set and delete features (the \top-down," or \backward" methods). Note that since

they don't examine all possible subsets, these algorithms are not guaranteed to produce the

optimal result. Kittler [7] gives a comparative study of these algorithms and the optimal

branch-and-bound algorithm using a synthetic two-class Gaussian data set. Pudil et al. [10]

update this study by introducing the two \oating" selection methods, SFFS and SFBS.

2.2 Deterministic, Multiple-Solution Methods

Siedlecki and Sklansky [14] have discussed performing a best-�rst search in the space of

feature subsets, as well as a restricted version of this, called \beam search." Both these

methods maintain a queue of possible solutions.

These are examples of methods that treat the space of subsets as a graph, called a

\feature selection lattice," (where each node represents a subset, and an edge represents the

containment relationship) and then apply any one of a number of standard graph-searching

algorithms. Since this approach does not appear to be widespread in the literature, we

have not included these methods in our evaluation.

2.3 Stochastic, Multiple-Solution Methods

Siedlecki and Sklansky [15] introduced the use of genetic algorithms (GA) for feature

selection. In a GA approach, a given feature subset is represented as a binary string

(a \chromosome") of length n, with a zero or one in position i denoting the absence or

presence of feature i in the set. Note that n is the total number of available features. A

population of chromosomes is maintained. Each chromosome is evaluated to determine its

\�tness," which determines how likely the chromosome is to survive and breed into the next

generation. New chromosomes are created from old chromosomes by the processes of (i)

crossover, where parts of two di�erent parent chromosomes are mixed to create o�springs,
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and (ii) mutation, where the bits of a single parent are randomly perturbed to create a

child.

2.4 Optimal Methods

The branch-and-bound (BB) feature selection algorithm, proposed by Narendra and Fukun-

aga [9], can be used to �nd the optimal subset of features much more quickly than exhaust-

ive search. One drawback is that the branch-and-bound procedure requires the feature

selection criterion function to be monotone, i.e.:

J(A [ B) � J(A) 8A;B � Y: (1)

This means that the addition of new features to a feature subset can never decrease the

value of the criterion function. We know from the curse of dimensionality phenomenon that

in small sample size situations this may not be true. Also, the branch-and-bound method is

still impractical for problems with very large feature sets, because the worst case complexity

of this algorithm is exponential. For a detailed explanation of the algorithm, the reader is

referred to Narendra and Fukunaga [9].

Hamamoto et al. [4] give results showing that the branch and bound procedure works

well even in cases where the feature selection criterion is nonmonotonic. Yu and Yuan

[19] present a modi�cation of the Narendra and Fukunaga's branch and bound algorithm,

called BAB+, and show, both analytically and experimentally, that it outperforms the ori-

ginal algorithm. Their modi�cation essentially recognizes all \string-structure subtrees"

(those subtrees that consist of a single path from the root to a terminal node) and immedi-

ately skips the search forward to the appropriate terminal node, thus saving intermediate

evaluations.

2.5 Node Pruning

Mao et al. [8] use a multilayer feedforward network with a backpropagation learning al-

gorithm for pattern classi�cation [13]. They de�ne a \node saliency" measure and present

an algorithm for pruning the least salient nodes to reduce the complexity of the network

after it has been trained. The pruning of input nodes is equivalent to removing the cor-

responding features from the feature set. The node-pruning (NP) method simultaneously
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develops both the optimal feature set and the optimum classi�er.

The squared-error cost function is used in training the network. The saliency of a

node is de�ned as the sum of the increase in error, over all the training patterns, as a

result of removing that node. Mao et al. [8] approximate the node saliency with a second-

order expansion and then compute that value by �nding the appropriate derivatives in a

backpropagation fashion. While computing the saliency directly from the de�nition (i.e.,

by removing each node from the network in turn and evaluating it over all the test data)

is impractical for a large network, this backpropagation method makes computing saliency

values practical, as it requires only one pass through the training data (versus one pass

per node).

The node pruning-based feature selection methodology �rst trains a network, and then

removes the least salient node (input or hidden). The reduced network is trained again,

followed by removal of the least salient node. This procedure is repeated until the desired

tradeo� between classi�cation error and size of the network is achieved.

3 Experimental Results

We have reproduced the results of Kittler [7] and Pudil et al. [10], comparing the feature

selection algorithms in terms of classi�cation error and run time on a 20-dimensional, 2-

class data set. The two class-conditional densities were Gaussian, with mean vectors �1 and

�2 and a common covariance matrix � used in [7, 10]. The criterion function for assessing

the \goodness" of a feature subset was the Mahalanobis distance ((�1� �2)
t��1(�1� �2))

between the two class means. Under Gaussian class-conditional densities, the probability

of error is inversely proportional to the Mahalanobis distance [2]. Maximum likelihood

estimates of the covariance matrix and mean vectors were computed from the data. A total

of �fteen feature selection algorithms, listed in Table 1, were evaluated and compared.

Execution times reported are processor ticks (0.01 second) spent in user space on a

SUN SPARCserver 1000. Ten randomly generated data sets, each with 1,000 patterns per

class, were tested and the averages of the runs are reported. Figure 2 shows the results for

some of the algorithms compared.

The following conclusions can be drawn based on these empirical results:

� The max-min algorithm, while very fast, gives poor results compared to the other

7



Classi�cation performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12 14 16 18 20

M
ah

al
an

ob
is

 d
is

ta
nc

e,
 J

feature subset size, d

BB
SFS

GSFS(3)
SFFS

PTA((1),(3))
MM
NP

Executation time

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

ex
ec

ut
io

n 
tim

e 
(.

01
 s

ec
)

feature subset size, d

Figure 2: Performance and execution times of selected algorithms on synthethic 2-class
Gaussian data set. 8



SFS SBS GSFS(2) GSBS(2)
GSFS(3) GSBS(3) SFFS SFBS
PTA((1); (2)) PTA((1); (3)) PTA((2); (3))
BB MM GA NP

Table 1: Feature selection algorithms used in experimental evaluation.

algorithms. It gives better subsets than SFS and SBS for small d, presumably be-

cause, unlike those algorithms, it is initialized by choosing the best possible pair.

This initial advantage is quickly lost as the value of d increases.

� The SFS and SBS algorithms have comparable performance. Both the algorithms

su�ered performance hits on this data due to the nature of the generated data,

which was engineered to show nesting problems. (For instance, the optimal 3-subset

is not contained in the optimal 4-subset, the optimal 6-subset is not contained in the

optimal 7-subset, etc.) The forward method is faster than its backward counterpart.

This is to be expected, as the forward method starts with small subsets and enlarges

them while the backward method starts with large subsets and shrinks them. It is

computationally more expensive to determine the criterion value for large subsets

than for small subsets. This is also true of the generalized methods (GSFS and

GSBS).

� The oating methods show results comparable to the optimal algorithm (BB) despite

being, for the most part, faster than the branch-and-bound algorithm. The SFFS

method lags behind for low d, probably because the algorithm satis�ed its termination

condition before being able to \oat" up and down exploring various subsets. The

lack of an explicitly speci�ed termination condition may be the cause for this, since

the original paper on oating methods [10] shows near-optimal results for all values

of d. A change in termination criterion (such as requiring a minimum number of

iterations) could produce better results.

It has been argued that since feature selection is typically done in an o�-line manner,

the execution time of a particular algorithm is of much less importance than its ultimate

classi�cation performance. While this is generally true for feature sets of moderate size,
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some recent applications (e.g., integration of multiple data models and data mining) have

focused on performing feature selection on data sets with hundreds of features. In such

cases execution time becomes extremely important as it may be impractical to run some

algorithms even once on such large data sets. For instance, on a 500-feature data set, the

GSFS(3) algorithm, which gives near-optimal results in [10], would require over 20 million

subset evaluations for the �rst step.

The genetic algorithm proposed by Siedlecki and Sklansky was also implemented and

tested. Unfortunately, this algorithm has several parameters for which no guidance is avail-

able on how to specify their values. Using a population size of 100 for �fteen generations,

with a probability of mutation pm = 0:02, we tried several di�erent settings of the feasibil-

ity threshold (ranging from 0.1 to 0.4) and the tolerance margin (ranging from 0.05 to 1.0).

The best result was obtained with threshold t = 0:1 and margin m = 0:05: an 8-element

subset giving a recognition rate of 78.9%. The GA seems to display a tendency towards

premature convergence|most runs reached their peak by the seventh or eighth generation

and failed to make further improvements after that.

It is di�cult to compare the GA method with the sequential methods. Unlike the

sequential methods, this method does not attempt to �nd the best subset of a speci�ed

size|its search space encompasses all the subsets. It is hard to get the algorithm to �nd

the overall best subset since the chromosome score is so heavily inuenced by the subset

size.

Siedlecki and Sklansky compared the GA approach with sequential search (forward and

backward), and with a nonoptimal variation of branch and bound (Foroutan-Sklansky BB

search) which is able to work with a nonmonotonic criterion. On a synthetic 24-dimensional

data set as well as on a real 30-dimensional data set, the GA outperformed these other

feature selection methods (in terms of both classi�cation performance and computational

e�ort).

Ferri et al. [3] compared SFS, SFFS, and the genetic algorithm methods on data

sets with up to 360 dimensions. Their results show that SFFS gives good performance

even on very high-dimensional problems. They show that the performance of GA, while

comparable to SFFS on medium-sized problems (around 20{30 dimensions), degrades as

the dimensionality increases.
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4 Selection of Texture Features

We have applied feature selection for the purpose of land use classi�cation using SAR

(Synthetic Aperture Radar) images. Some of the SAR images used in our experiments are

given in Figure 3. Solberg and Jain [16] have used texture features computed from SAR

images to classify each pixel into one of �ve classes. A total of 18 features per pattern

(pixel) were computed from four di�erent texture models: local statistics, gray level co-

ocurrence matrices (GLCM), fractal features, and a lognormal random �eld model (MAR).

These 18 features are listed in Table 2. Our goal is to determine whether the classi�cation

error can be reduced by applying feature selection to this set of 18 features derived from

four di�erent texture models. A similar feature selection study for 2D shape features was

reported by You and Jain [18].

# feature model
1 mean local statistics
2 �1 MAR
3 �2 MAR
4 �3 MAR
5 � (variance) MAR
6 mean (logarithmic) MAR
7 angular second moment GLCM
8 contrast GLCM
9 inverse di�erence moment GLCM
10 entropy GLCM
11 inertia GLCM
12 cluster shade GLCM
13 power-to-mean ratio local statistics
14 skewness local statistics
15 kurtosis local statistics
16 contrast (from Skriver, 1987) local statistics
17 lacunarity fractal
18 dimension fractal

Table 2: Set of 18 texture features from four di�erent models.

We report results for one SAR image (the October 17 image from [16]), containing

approximately 22,000 pixels. This data was split equally to form \independent" training
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Figure 3: Sample SAR images, with corresponding ground truth image at lower right.

and test sets.

The k-Nearest Neighbor (KNN) recognition rate was used as the feature selection cri-

terion. Both 1NN and 3NN classi�ers were used. Based on its consistently high per-

formance for the synthetic data in Section 3, we chose to apply the SFFS method to the

texture data set. The results of these runs are shown in Figure 4. Feature selection results

based on KNN classi�ers have the following behavior: as more features are added, there

is a relatively smooth rise in the recognition rate, which then peaks and eventually falls,

demonstrating the curse of dimensionality.

Table 3 gives, for each KNN run, the best recognition rate achieved and the optimal

number of features. The feature selection process is not just using the features derived

from a single texture model but is utilizing features from di�erent models to provide a

better performance. For instance, in every case, the �ve-feature subset selected contains

features from at least three di�erent texture models. The best individual texture model

for this data set was the MAR model with a classi�cation accuracy of 68.8% [16]. Pooling

features from four di�erent texture models and then applying feature selection increased

the classi�cation accuracy of a 1NN classi�er to 89.3%.
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Figure 4: Recognition rates of SFFS method on texture features.

Classi�er Recognition rate (%) Optimal number of features
1NN 89.3 12
3NN 88.4 11

Table 3: Best classi�cation accuracy achieved by the SFFS feature selection method.
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5 E�ect of Training Set Size on Feature Selection

How reliable are the feature selection results in the presence of small amounts of training

data? In the case where Mahalanobis distance is used as the criterion, the error arising from

estimating the covariance matrix can lead the feature selection process astray, producing

inferior results (relative to the true distributions) on independent test data even if the

selected subset is optimal for the given training data [12]. We have also seen this e�ect

on the texture data set in the previous section. This phenomenon, which is related to the

curse of dimensionality, is highlighted by running the feature selection algorithm on varying

amounts of training data drawn from known class conditional densities. Trunk [17] used

the following two-class example to illustrate the existence of the curse of dimensionality.

The two class-conditional densities are given below:

p(xj!1) � N(�; I) p(xj!2) � N(��; I) (2)

where

� =
h

1p
1

1p
2

1p
3

� � �
it

(3)

and I denotes the n� n identity matrix. Trunk showed the following results:

1. If the mean vector � is known, then the probability of error pe(n) monotonically

decreases as the number of features n is increased.

2. If the mean vector is unknown then, for a given training sample size used to es-

timate �, the estimated probability of error p̂e(n) shows a peaking behavior, i.e.

limn!1 p̂e(n) = 1=2.

The class-conditional densities in Eqs. (2) and (3) are useful to investigate the quality of

the feature subsets generated by various feature selection methods because for any n and

d, the optimal d-feature subset of the given n features is known for the true distribution:

it is the �rst d features.

Data sets of various size, ranging from 10 to 5,000 training patterns per class, were

generated from the two 20-dimensional distributions (Eqs. (2) and (3)). For each training

set size, �ve data sets were generated, and the results averaged. The feature selection

quality for a training set was calculated by taking the number of commonalities in the

resulting feature subset when compared with the optimal subset of the true distribution:
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features that were included in both subsets, and features that were excluded from both

subsets. This count was divided by the number of dimensions, and that value was averaged

over values of d from 1 to 19 inclusive to give a �nal quality value for the feature set. Note

that this value is not a measure of the classi�cation error, but a measure of the di�erence

between the subset produced by a feature selection method and the ideal feature subset.

The average quality for di�erent training set sizes for the branch and bound and SFS

methods is shown in Figure 5.
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Figure 5: Quality of selected feature subsets as a function of the size of training data.

Since the true class-conditional densities are not at all deceptive with respect to feature

selection|the features are all independent with identical variance, only the di�erences in

feature means provide discriminatory information|the selected feature subset should not

depend on the speci�c feature selection algorithm used; any feature selection algorithm

should perform well on such a simple problem. Indeed, the performance of the SFS al-

gorithm in Figure 5 closely matches that of the branch-and-bound algorithm. As expected,

the quality of the selected feature subset for small training sets is poor, but improves as
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the training set size increases. For example, with 20 patterns in the training set, one run

of branch-and-bound selecting 10 features chose the subset f1; 2; 4; 7; 9; 12; 13; 14; 15; 18g

(the optimal 10-subset from the true distribution being f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g). With

2,500 patterns in the training set, one run of the branch-and-bound procedure selected the

subset f1; 2; 3; 4; 5; 6; 7; 9; 10; 11g.

6 Summary

This paper illustrates the merits of various methods of feature selection. In particular, the

results of Pudil et al. [10] demonstrating the quality of the oating search methods are

replicated. The oating search methods show a great promise of being useful in situations

where the branch-and-bound method can not be used, due to either the nonmonotonicity

of the feature selection criterion or computational reasons.

Results on texture data show that feature selection is useful in utilizing feature derived

from di�erent texture models. We also show the pitfalls of using feature selection with

limited training data. By using feature selection on a classi�cation problem with known

distributions and comparing the selected subsets (under �nite sample size) with the true

optimal subset, the quality of the selected subset can be quanti�ed. Our experiments show

the potential pitfalls of using feature selection on sparse data in a high dimensional space.
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