
v�: An Interactive �-Calculus Tool

Doug Zongker

CSE 505, Autumn 1996

December 11, 1996

\Computers are better than humans at doing these things."

{ Gary Leavens, CSE 505 lecture

1 Introduction

The �-calculus is a useful model of computation because of its power and its close
relationship to functional programming languages. Working with it, though, can
be a tedious process because of its austerity|a lot of information is carried in
one long, heavily parenthesized string.

The goal of this project is to produce a graphical-interface tool which auto-
mates the tiresome bookkeeping portion of working with �-expressions while
giving the user useful feedback and allowing all the power and 
exibility of the
�-calculus.

This report describes the \visual �" tool (v�) that has resulted. Section 2
consists of a short user manual. Section 3 discusses some interesting aspects
of the implementation. The terms and de�nitions used in the implementation
correspond to those in Hindley and Seldon [HS86].

2 Interface

Figure 1 shows an instance of the main evaluation window. It is composed
of three sections: the top part displays the current �-expression, there is an
input line for entering new expressions, and there are controls for the window
at the bottom. In this �gure, a number of reductions have taken place. The
bottommost expression is the current expression.

2.1 Entering a �-expression

Because most keyboards and X fonts do not include the � character, v� substi-
tutes a backslash in both input and output. Variables consist of single lowercase
letters. Whitespace is unimportant, except for the entering of macro names (dis-
cussed below). The following are all valid entries:

1



Figure 1: The evaluation window.

ab

a b

\a.b

(\x.y)((\x.xx)(\x.xx))

Expressions with nested abstractions such as \x.(\y.(\z.w)) can be ab-
breviated as \xyz.w. v� also has a macro facility for entering commonly used
subexpressions. Macro names begin with a capital letter, followed by zero or
more letters or numbers. (If a macro is followed immediately by a variable
name, they must be separated by whitespace or the variable will be parsed as
part of the macro name.) A number of prede�ned macros are loaded from the
�le library, and additional macros can be de�ned interactively.

Pressing Enter or clicking the Parse button in the window will parse the
expression and display it as the current expression.

2.2 Viewing �-expressions

If an expression is not grayed out, then some information about it is available
by pointing to parts of it:

1. Pointing at a parenthesis causes the subexpression enclosed by that par-
enthesis to be highlighted in purple.

2. Pointing at a variable causes all instances of that variable that are bound
together to be highlighted in red|pointing to a free variable instance
highlights only the one pointed to, while pointing to a bound instance
also highlights all the instances that are bound by the same abstraction.

2



3. If an abstraction is reducible, then pointing to its \�" (the backslash) will
cause the variable that would be substituted to be highlighted in blue,
and the \argument" of the reduction to be highlighted in green.

Normally, all expressions except the current expression are grayed out, so
these features are not available. An expression can be \reactivated," however:
to the left of each expression is a number, its position in the window. Holding
down mouse button 1 on this number brings up a small popup menu (Figure 2):

Figure 2: Expression popup window.

The Active tags checkbutton in this menu can be used to control the
graying-out of expressions other than the current one. The Open in new

window command causes a new evaluation window to be created with that
expression as the current expression. The Recall command places the text of
that expression in the input �eld, so it can be edited and entered as a new ex-
pression. The De�ne command brings up a dialog box allowing that expression
to be de�ned as a new macro, and optionally saved in the library �le.

The display options button in the evaluation window pops up a menu of
checkbutton options:

wrap text Controls whether long expressions are wrapped or truncated in the
window.

full parentheses If checked, expressions will be displayed fully parenthesized.

show subscripts If checked, each variable will be printed with a subscript
(an underscore followed by a number), so that each unique variable gets
a di�erent subscript (free instances of a variable will all be numbered
di�erently, as will each occurrence of a variable bound in an abstraction).

The last three options control how expressions which contain macros are dis-
played. Every subexpression that derives from a macro can be displayed as the
macro name, or as the expanded de�nition. If none are checked, then no macros
are expanded (every subexpression is displayed as its name).

expand all Expressions are printed with macros fully expanded.

expand normal Expressions are expanded as necessary to display the normal-
order redex, if there is one.

expand applicative Expressions are expanded as necessary to display the
applicative-order redex, if there is one.

3



2.3 Performing reductions

�-reduction of the current expression in a window can be done by pointing to
any reducible lambda and clicking. The result of the reduction becomes the new
current expression.

At the bottom of the window are two buttons: normal and applicative

for performing the normal-order and applicative-order reductions respectively.
(Moving the mouse into either of these buttons causes the appropriate redex to
be highlighted in the window, if it is visible.) These buttons are grayed out if
the current expression has no redexes.

�-conversion can be performed by clicking on the variable that you want to
rename. A dialog box will pop up, prompting you for a replacement variable
name. Converting a free variable will never cause it to become bound. For
example, in the expression �x:xa, renaming a to x will not change the meaning of
the expression. Turning on display of subscripts will show that it is represented
internally as �x1:x1x0.

2.4 Prede�ned macros and fun things to do

The macros If, True, and False are de�ned as in Paul Hudak's lecture, so that
If True x y gives x and If False x y gives y. Using these, Or, And, and
Not are de�ned, so Boolean expressions like

Or (Not True) (And True (Not False))

can be evaluated. This is one area in which normal order evaluation can be
more e�cient than applicative order, since normal order e�ectively produces
short-circuit evaluation.

Hudak's representation of the integers, and the addition function, are de�ned
as Zero through Four and Add. The twice function is de�ned as Twice, so
Twice f x reduces to f(fx). Using v� we can verify that

Twice Twice Twice (Add One) Zero

really does reduce to (the � representation of) sixteen. (It takes 140 reductions
using normal order, or 69 using applicative order.)

Some combinators (S, K, B, I, C, and Y) are de�ned as well.

2.5 Miscellany

There are a few other buttons in the evaluation window:

clear Clears all expressions from the current window.

spawn Opens a new, empty evaluation window.

close Closes the evaluation window. Closing the last open window causes the
application to exit.

quit Closes all application windows and exits.

4



3 Implementation

v� is implemented in C and Tcl/Tk. All of the manipulation of �-expressions is
done by the C code, while the user interface is handled in Tcl/Tk. The Tcl/Tk
code refers to expressions via handles returned from the C code. The project
consists of roughly 1500 lines of C (including the input to the Bison parser
generator and the Flex lexer generator) and 600 lines of Tcl/Tk.

3.1 Representation of �-expressions

�-expressions are represented internally as a binary tree with an associated
linked list of variables, as in Figure 3. Leaf nodes of the tree represent variable.
There are two types of internal nodes: abstractions and applications. An ab-
straction is an expression of the form �x:y; an application represents the form
(xy). A redex is thus an application whose left side is an abstraction.

λ

x

x x

y

z

x y z

Figure 3: Internal representation of (�x:xxy)z.

These structures are built from a user's text input by a Bison/Flex parser.
When read, variables are distinguished only by their names, so, for instance, all
instances of x refer to the same variable record. This is incorrect for expressions
like (�x:x)x, where the x outside the parentheses is free and the xs inside are
bound. A variable separation process must take place to distinguish free and
bound instances.

The procedure works like this:

Initialize an empty global stack

Begin a recursive depth-�rst search at the root:

If I am a leaf (variable) node, then search up the stack for the �rst
instance of me. If there are no instances, then I am a free variable,

5



x x x

λ λ

x x

x

x x

x

Figure 4: E�ects of the variable separation process, on the expression (�x:x)x.

so separate me (duplicate the record in the linked list, and point
me to the new copy). Otherwise, I am bound to the top instance
on the stack.

If I am an abstraction node, then separate my bound variable
(left child) and push a pointer to that instance on the stack, then
recurse down the right side (the body of the lambda). When that
returns, pop the instance I added to the stack.

If I am an application node, just recurse down the left and right
subtrees.

When this routine is �nished, the linked list can be traversed to assign a
unique subscript number to each variable. This is purely for the bene�t of
the user; the program internally distinguishes variables by the addresses of the
records in the linked list.

3.2 �-reduction

The principal operation that is performed on �-expressions is �-reduction. Sup-
pose that p is the root of a subtree that is chosen for reduction. For p to be
reducible, p must be an application node, and p's left child must be an abstrac-
tion node.

If we let l(�) and r(�) represent the left and right children of a node, re-
spectively, then the result of the reduction will be a copy of r(l(p)), with every
instance of the variable l(l(p)) replaced by a copy of r(p). The new subtree
replaces the subtree rooted at p in the expression. Since the argument of the
reduction may contain abstractions of its own, though, the whole expression
must be put through the variable separation process again, in order to separate
the variables in the various copies of r(p). The reduction process is illustrated
in Figure 5.

References

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators

and �-Calculus. Number 1 in London Mathematical Society Student
Texts. Cambridge University Press, 1986.

6



zx

zz

λ λ

z z z z

*

λ

z z z z

*

λ

variable
separation

x z z

x x

λ λ

*

reduction

λ λ

z z z z

*

λ

z z z z

*

λ

zzz

Figure 5: Reduction of expression (�x:xx)(�z:z) to (�z:z)(�z:z). The body of
the abstraction is marked with an asterisk.

7


