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Abstract

We investigate the application of deformable templates to recognition of hand-
printed digits. Two characters are matched by deforming the contour of one to �t the

edge strengths of the other, and a dissimilarity measure is derived from the amount of
deformation needed, the goodness of �t of the edges, and the interior overlap between

the deformed shapes. Classi�cation using the minimum dissimilarity results in recog-
nition rates up to 99.25% on a 2,000 character subset of NIST Special Database 1.

Multidimensional scaling is also applied, using the dissimilarity measure as a distance,
to embed the patterns as points in low-dimensional spaces. The nearest neighbor clas-

si�er is applied to the resulting pattern matrices. Methods to reduce the computational
requirements, the primary limiting factor of this method, are discussed.

1 Introduction

Automatic recognition of handprinted characters has long been a goal of many research

e�orts in the pattern recognition �eld. The subproblem of digit recognition is also seen as

important, not only because advances in it are expected to lead to advances in the general

case, but also because of its immediate applicability to a number of �elds, the most frequently

cited of which is the reading of Postal ZIP codes from mail pieces.
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Figure 1: Sample digit images from the NIST SD-1 data set.

The challenges in handwritten digit recognition arise not only from the di�erent ways

in which a single digit can be written, but also from the varying requirements imposed by

the speci�c applications. The primary performance measures are classi�cation accuracy and

recognition speed|a system for reading ZIP codes from envelopes may not be appropriate

for reading amounts from checks, due to the di�ering volumes and costs of error.

A number of schemes for digit classi�cation have been reported in the literature. They

di�er in the feature extraction and classi�cation stages employed. Many methods for ex-

tracting features from character images have been proposed. The proposed features include

counts of topological features (crossings, endpoints, holes, etc.) and various mathematical

moments. While these ad hoc features have performed well in many tests, they are neither

intuitive nor, in many cases, generally applicable to other character sets. Classi�cation meth-

ods used for digit recognition include nearest neighbor classi�ers and multilayer perceptron

networks. There has also been a recent trend to combine the outputs of multiple classi�ers

[12].

A more intuitive alternative to these feature extraction models is the use of deformable

templates, where an image deformation is used to match an unknown image against a

database of known images. We have investigated the use of image deformation to hand-

printed digit recognition. Therefore, our literature review includes only similar approaches;

for a wider survey of digit recognition in general, refer to the recent paper by Trier et al.

[13].

The goal of this paper is to investigate the deformation of character images as a source of

information for recognition. We show that a combination of the deformation energy required

to match two character images and the template matching coe�cients of the resulting binary

images form a good measure of dissimilarity between images. We have used this dissimilarity

measure for classi�cation of unknown images. After the literature review, we present our

deformation model, discuss the use of this model for feature extraction, and present results

with this method on a 2,000 image NIST SD-1 handwritten digit data set.
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2 Deformable Models for Digit Recognition

A number of studies have been reported in the literature which have applied deformable

models to digit recognition. Research in this area has concentrated on taking a skeletonized

digit image, representing it with a number of curve segments, and then altering the curve

parameters to deform the image. Nishida [8] proposes a grammar-like model for applying

deformations to structures composed of primitive strokes. Lam and Suen [7] use a two-stage

method for recognition, in which samples are �rst classi�ed by their structure using a tree

classi�er. Samples which can not be satisfactorily assigned to a class in this way are passed

to a slower relaxation matching algorithm which uses deformation to match the sample to

each template. They report a 93.15% recognition rate, with a 4.60% rejection rate on a 2000-

sample database taken from USPS ZIP code images. Cheung et al. [2] model characters with

a spline, and assume that the spline parameters have a multivariate Gaussian distribution.

A Bayesian approach is then used to determine the character class, with the model param-

eters as prior and the image data parameters as likelihood. This method achieved a 95.4%

recognition rate on the NIST SD-1 handprinted digit set. Revow et al. [9] model digits

as ink-generating Gaussian \beads" strung along a spline outline. Characters are matched

through deformation of the spline and adjustment of the bead parameters. Their best result

reported is 99.00% recognition accuracy on a 2,000 character set with no rejections.

Simard et al. [10] present a digit recognition system based on an e�cient distance measure

that is locally invariant to transformations such as translation, rotation, scaling, stroke

thickness, and others. E�ciency is further improved by using a multiresolution algorithm

to di�erentiate very dissimilar patterns using a simpler, coarser distance measures. On a

NIST-provided set of 60,000 training patterns and 10,000 test patterns, this method reached

an 0.7% error rate.

Casey [1] gives a method for linear transformation of digit images, based on moment

normalization, for removing some skew and orientation variation. This is used as a pre-

processing step by Gader et al. [3] for a digit recognition system based on binary template

matching. The authors report recognition rates in the range of 94.03{96.39%, with error

rates in the range 0.54{1.05%.

Wakahara [15] uses iterated local a�ne transformation (LAT) operations to deform binary

images to match prototype digit images. This method correctly identi�ed 96.8% of a 2400-

sample database, with a substitution error rate of 0.2% and a reject rate of 3%.

The deformation and matching technique used in this paper was proposed by Jain et al.
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(a) (b) (c) (d)

Figure 2: Deformations of a sample digit image. (a) original image; (b) M = N = 1; (c)
M = N = 2; (d) M = N = 3.

[5]. In this approach, the image is considered to be mapped to the unit square S = [0; 1]2.

The deformation is then represented by a displacement functionD(x; y). These displacement

functions are continuous and are zero on the edges of the unit square. The mapping (x; y) 7!

(x; y)+D(x; y) is thus a deformation of S, a smooth mapping of the unit square onto itself.

The space of displacement functions has an in�nite orthogonal basis:

exmn(x; y) = (2 sin(�nx) cos(�my); 0) (1)

eymn(x; y) = (0; 2 cos(�mx) sin(�ny)) (2)

for m;n = 1; 2; : : :. Low values of m and/or n correspond to lower frequency components

of the deformation in the x and y directions, respectively. Figure 2 shows a series of defor-

mations using progressively higher-order terms. Note that the deformation gets more severe

as higher-order terms are included in the expansion. A parameter vector � can be used to

represent a speci�c deformation function with this basis:

D�(x; y) =
1X
m=1

1X
n=1

�xmne
x
mn + �ymne

y
mn

�mn
: (3)

The parameters �mn = ��2(n2 +m2) serve as normalizing constants.

3 Methodology

The basic goal is to determine the dissimilarity between two digit images using a deformable

template approach. This is achieved by transforming one image into a template, and de-
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forming it to �t the other image as closely as possible. The dissimilarity measure is de�ned

in terms of (i) how well the deformed template �ts the target image, and (ii) how much

deformation was required.

In practice, we truncate the in�nite series expansion of Eq. (3) to get a �nite-length

parameter vector �:

D�(x; y) =
MX
m=1

NX
n=1

�xmne
x
mn + �ymne

y
mn

�mn
: (4)

The template is �t to the target image using a Bayesian approach, as in [5]. The prior is

a function of �; a measure of how much deformation of the template is required.

We use M and N equal to 3. This choice allows a su�ciently wide range of possible

deformations, while keeping the number of parameters, and hence the computational re-

quirements, reasonable. The parameter vector � consists of 9 ordered pairs. A probability

density is assumed for the components of �. For simplicity, we assume that the terms �mn

are independent of each other, that the x and y components are independent, and that they

are each Gaussian distributed with mean zero and variance �2. This leads to the following

prior distribution on the parameter vector:

P (�) = �
1

(2��2)MN
exp

(
�

1

2�2

"
MX
m=1

NX
n=1

((�xmn)
2 + (�ymn)

2)

#)
; (5)

where � is a normalizing constant.

The likelihood is determined by how well the template contour �ts the edge location and

direction of the target image (as determined by the Canny edge detection operator). This is

given by an energy function de�ned at the points of the deformed template T�, in terms of

the deformation vector and the target image Y :

E(T�; Y ) =
1

nT

X
(1 + �(x; y) jcos(�(x; y))j) : (6)

Here, nT is the number of pixels in the template outline, �(x; y) is an edge potential function

(lowest near edge pixels in the target image Y ), and �(x; y) is the angle between the tangent

direction of the template at (x; y) and the tangent direction of the nearest edge in the target

direction.

We combine the prior probability and likelihood using Bayes rule to derive the following

objective function, which we attempt to minimize:
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O(T�; Y ) = E(T�; Y ) + 
MX
m=1

NX
n=1

�
(�xmn)

2 + (�ymn)
2
�
; (7)

where  provides a relative weighting between the two penalty terms.

The output of the deformation process is a single objective function value in the range

[0; 1], with zero indicating a perfect match with no deformation. It is important to note that

this objective value is not symmetric, that is, the objective value from matching a template

derived from image i to image j will not necessarily be the same as that of matching template

j to image i.

The above process deforms the template so that it corresponds as closely as possible

to edges in the target images. In practice, however, this is not su�cient for matching, as

templates of topologically simple characters such as `1' and `0' can often be mapped on to

the edges of any target image. Because of this, we also calculate binary matching coe�cients

between the target image and the interior of the deformed outline. The Jaccard measure

(selected on the basis of its good performance in the evaluation of Tubbs [14]) is used to

gauge the similarity between two binary digit images. The Jaccard measure Jij between two

binary images i and j is de�ned as

Jij =
b01 + b10

b00 + b01 + b10
; (8)

where b00 is the number of points which are object pixels in both images, and b10 and b01

count the pixels which are background in one image and object in the other. Note that this

measure is actually the standard Jaccard measure [4] subtracted from one, so that lower

values indicate better matches, just as in the objective function de�ned in Eq. (7).

The dissimilarity between two binary images (a template i and a target image j) is now

computed as a weighted sum of the two dissimilarities de�ned in Eqs. (7) and (8).

Dij = �Oij + (1� �)Jij ; 0 � � � 1: (9)

(Note that O(T�; Y ) in Eq. (7) is here denoted as Oij .) The weight � needs to be speci�ed

by the user. With this measure, a smaller value of Dij indicates more similar images. Figure

3 shows the results of two deformations, one with images from the same class and one with

images of di�ering classes. Table 1 gives the value of Dij for these two pairs, with various

weight values.
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Oij = 0:0922 Oij = 0:1942
Jij = 0:4403 Jij = 0:5818

(a) (b)

Figure 3: Deformed template superimposed on target image, with dissimilarity measures.
(a) Template from the same class as target; (b) template from a di�erent class.

� Dij pair (a) Dij pair (b)
1 0.0922 0.1942
1/2 0.2662 0.3880
0 0.4403 0.5818

Table 1: Dissimilarity values for the image pairs of Figure 3, for various values of weight �.

4 Multidimensional Scaling for Feature Extraction

At this point we have de�ned two dissimilarity measures Oij and Jij between a pair of

character images, and can calculate an n � n proximity matrix for a set of n input images.

To apply many standard pattern classi�cation techniques, however, we need an n�d pattern

matrix|a set of d features for each of the n patterns.

Multidimensional scaling [6] is a well-known technique to obtain an appropriate repre-

sentation of the patterns from the given proximity matrix. Given an n � n input matrix

of interpattern distances, multidimensional scaling creates an n� d pattern matrix; embed-

ding the n patterns as points in a d-dimensional space, trying to keep the distances between

patterns as close to the input dissimilarity matrix as possible. For a given d, the algorithm

minimizes a stress value, which measures the similarity between the given proximity matrix

and the interpoint distances of the output pattern matrix. The pattern matrices produced

by two sample multidimensional scaling runs (corresponding to the starred entries of the

table in Figure 6) are shown in Figures 4 and 5.

It is expected that given a meaningful set of interpattern distances as input, the mul-
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Figure 4: Two-dimensional pattern matrix produced by multidimensional scaling, with � =
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Figure 5: Three-dimensional pattern matrix produced by multidimensional scaling, with
� = 1=2, from two di�erent perspectives.
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tidimensional scaling algorithm [11] will generate a pattern matrix that represents pattern

classes as compact and isolated clusters in a feature space. We have applied multidimen-

sional scaling to the dissimilarity matrices produced by the deformable template method,

and used a nearest-neighbor (NN) classi�er to evaluate the quality of the resulting pattern

matrix or the representation space.

The stress values obtained using this procedure for di�erent values of d (dimensionality

of the representation space) are given in Table 2 and plotted in Figure 6. Three di�erent

values of � were used: 0, 1, and 1=2. These correspond to using the objective function

value Oij only, the Jaccard measure Jij only, and an equally weighted sum of the two.

Each dissimilarity matrix was averaged with its transpose to produce a symmetric distance

matrix. Due to computational limitations, only 500 of the 2,000 patterns in the database

were used in this analysis. So, an attempt was made to embed 500 patterns in feature

spaces of dimensionality ranging from 2 to 9. Stress generally decreases as d increases over

this range. It is generally suggested that a stress value below 0.05 corresponds to a \good"

representation. The quality of the derived representation will be determined based on the

classi�cation results in the next section.
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Figure 6: Plot of multidimensional scaling stress vs. number of features.
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# of dimensions, d
� 2 3 4 5 6 7 8 9

1 0.2509 0.1501 0.11588 0.08897 0.07742 0.07300 0.07179 0.07561

1/2 0.3614� 0.2500� 0.18922 0.15244 0.12255 0.09837 0.08375 0.07016
0 0.3976 0.2968 0.22817 0.18680 0.15400 0.13094 0.11287 0.09934

Table 2: Multidimensional scaling stress values, for various dissimilarity measures and di-
mensionalities. Pattern matrices for the entries marked with � are plotted in Figures 4 and
5.

5 Classi�cation Results

All results presented here are based on a 2,000 character sample from NIST Special Database

1. Each character is a 32� 32 binary image. A 4-pixel-wide border was placed around each

image to allow the deformation process some room to adjust the template in, so the actual

image size used was 40 � 40 pixels.

We use the dissimilarity value Dij in Eq. (9) to classify each target image. A leave-

one-out approach is used, with two di�erent ways of calculating the dissimilarity value. In

the �rst (\asymmetric"), the unknown image is classi�ed by taking it as the target image,

and each of the other 1,999 images as templates in turn. The unknown image is assigned

to the class of the template with the minimum dissimilarity value. The second (\symmet-

ric") method also compares the unknown image with the other 1,999 images but instead of

treating the unknown image as the target and the known image as the template, it performs

the deformation both ways and averages the results. While the second method gives better

results, it has the disadvantage of requiring twice as many deformations to classify an un-

known image. Table 3 gives the classi�cation accuracies for di�erent values of the weight

�.

correct classi�cations
� asymmetric symmetric
1 952/2000 (47.60%) 1873/2000 (93.65%)

1/2 1957/2000 (97.85%) 1985/2000 (99.25%)
0 1951/2000 (97.55%) 1971/2000 (98.55%)

Table 3: Classi�cation accuracies using the dissimilarity value Dij.
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Figure 7: Misclassi�ed digits by the best classi�er of Table 3. (a) The �fteen input images
that were misclassi�ed; (b) the classes assigned by the classi�er.

The 15 images misclassi�ed using the symmetric dissimilarity with � = 1=2 are shown in

Figure 7. Some of these images are very di�cult to classify, even by a human expert.

# of dimensions, d
� 2 3 4 5 6 7 8 9
1 0.430 0.710 0.720 0.846 0.884 0.902 0.894 0.912
1/2 0.552 0.804 0.894 0.922 0.958 0.960 0.960 0.970
0 0.526 0.786 0.904 0.938 0.942 0.960 0.946 0.962

Table 4: Results of 1NN classi�er applied to the pattern matrix derived from multidimen-
sional scaling.

Classi�cation was also done by using a nearest-neighbor algorithm on the pattern matrix

produced by the multidimensional scalings of Section 4. A leave-one-out approach was used.

These results are given in Table 4 and plotted in Figure 8. The best 1NN recognition rate

obtained was 97.0%, using � = 1=2, with 9 dimensions. While this technique is impractical

for use as a classi�er in a production system (the computationally expensivemultidimensional

scaling algorithm would have to be applied for each digit to be classi�ed), it does illustrate

the existence of a relatively small set of features that give good classi�cation performance

with a simple classi�er such as 1NN. These results should motivate us to search for a good

representation space for handwritten digits.

The computational requirements of our deformable template approach to digit classi�-

cation are high. To classify a single character against the database of 2,000 images, using
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Figure 8: Plot of 1NN recognition accuracy vs. number of dimensions.

the asymmetric dissimilarity would require running the deformation process 2,000 times,

which takes approximately 64 CPU minutes on a SPARCstation 20/61. Use of the symmet-

ric dissimilarity doubles the necessary computational e�ort. To use the NN method as a

classi�er would require additionally rerunning the multidimensional scaling process for the

2,000 database images plus the test images. Obviously, this does not make for a practical

classi�er.

One way to reduce this computational burden would be to reduce the size of the training

set, by selecting a small number of images to serve as prototypes for the whole class. One

approach would be to cluster the patterns of each class, and select a representative of each

cluster. To implement this strategy, we performed a complete-link hierarchical clustering

on the patterns of each class, independently. The resulting dendrogram was cut to form p

clusters. To choose a representative from each resulting cluster, the sum of dissimilarities

from each member to all other members of the cluster was computed. The member with the

minimum such sum is chosen. In this way, p prototype images from each class are chosen,

10p images in all for the digit database. A sample dendrogram is shown in Figure 9.

The prototype set is tested using the minimum dissimilarity classi�cation method, as in

Table 3. The symmetric dissimilarity value is used. Instead of a leave-one-out method as
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Figure 9: Sample dendrogram for the `4' class, p = 10, � = 1=2. The dotted line indicates
where the cut was made to form 10 clusters. The leaf nodes corresponding to the selected
prototypes are marked with triangles.
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# of prototypes per class, p full database
� 5 10 20 30 (p = 200)
1 0.843 0.890 0.925 0.938 0.937
1/2 0.950 0.963 0.982 0.988 0.993
0 0.929 0.940 0.971 0.975 0.986

Table 5: Classi�cation accuracy of least dissimilar prototype pattern matching.

above, a holdout method is used|the prototypes form the training set, and the remaining

images form the test set. The classi�cation accuracy using this method, for di�erent values

of p, is shown in Table 5.

Comparing the case of 30 prototypes per class to the use of the full database (equivalent

to 200 prototypes per class), the recognition rate drops slightly for two of the three values of

� tested. However, the computational e�ort required to classify an unknown character with

30 prototypes per class is only 15% of that needed when the full database is used. It should

also be noted that the reduced databases are tested using a holdout method, with separate

training (selected prototypes) and test patterns, while the recognition rate reported for the

full database uses a leave-one-out method.

6 Summary

We have used a deformable template approach for the purpose of handprinted digit recogni-

tion. The deformation system used represents one binary image in terms of its contour, and

then iteratively computes parameters of a continuous displacement function in order to map

the contour template as closely as possible onto the edges of the other binary target image.

Two dissimilarity measures between character image pairs have been de�ned: a measure

of the amount of deformation needed, and the Jaccard binary matching coe�cient between

the target image and the deformed template image. Classifying each image using the mini-

mum dissimilarity to all the other templates produced over 99% accuracy on a 2,000 image

database.

Future work will focus on reducing the computational requirements of this method,

through faster deformation software and better selection of representative prototypes from

the training set.
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