
The Royal Tree Problem, a Benchmark for Single and
Multi-population Genetic Programming

appears in \Advances in Genetic Programming II", MIT Press, Pete Angeline and
Kim Kinnear, editors

Bill Punch, Doug Zongker, and Erik Goodman

We report on work done to develop a benchmark problem for genetic programming, both
as a di�cult problem to test GP abilities and as a platform for tuning GP parameters.
This benchmark, the royal tree, is a function that accounts for tree shape as part of its
evaluation function, thus it controls for a parameter not often found in the GP literature.
It also is a progressive function, allowing the user to set the di�culty of the problem
attempted. We not only describe the function, but also report on results of using island

parallelism for solving GP problems. The results obtained are somewhat surprising, as it
appears that a single large population outperforms a group of smaller populations under
all the conditions tested.

15.1 Introduction

Given the multiplicity of GP programs that could produce the correct solution for

a particular problem, it is di�cult to judge the e�ectiveness of various architectural

changes or parameter settings on the performance of a GP system. We encountered

these problems directly in the design of our genetic programming tool lilgp. When

lilgp was completed, we wanted to test how well it solved a set of standard GP

problems. In fact, for a new GP system it is di�cult to judge whether it is performing

as intended or not, since the programs it generates are not necessarily identical to

those generated by other GP systems. This raised two questions: what constitutes

a \standard" problem in GP, and how do we rate the performance of a system on

such a problem.

One of the goals of this research was to create a benchmark problem to test how

well a particular GP con�guration would perform as compared to other con�gura-

tions. Such benchmarks have existed for some time in the GA �eld, in particular

the royal road problems of Holland [Jones 1994]. In creating the royal road, Holland

addressed three issues. First, the royal road provides a proof-of-principle for the

kind of di�cult problems, exhibiting deception, that a genetic algorithm is capable

of solving. Second, it serves as a benchmark of performance for tuning GA param-

eters. For example, at ICGA93, Holland claimed a specialized, properly tuned GA



could solve all but the last level of a 4-level royal road problem in 10,000 evaluations

or less. Third, Holland in fact created a family of royal road functions as bench-

marks for GA systems, in order to o�er a controllable level of di�culty, control over

the amount of deception, clearly de�ned building blocks and control over linkage

among adjacent building blocks.

We were interested in addressing the same issues, showing how GP could address

di�cult problems as well as providing a tunable benchmark for comparing GP con-

�gurations. Furthermore, we were interested in creating and using this benchmark

to test the e�ectiveness of coarse-grain parallel GP's as compared to single popu-

lation GP's. It is not obvious that the solutions typically found by a coarse-grain

parallel GP architecture will resemble those produced by a single population GP

architecture, especially given that the only measure of similarity typically used is

whether the generated trees produced the proper answer. A suitable benchmark

problem which has only a single, unique tree as an answer can remove this obstruc-

tion. Then, given a search for a unique, optimal solution, the question of parallel

speedup provided by a coarse-grain architecture, in the sense of reduction of total

function evaluations obtained through the use of multiple populations, can be more

clearly addressed (See section 15.4.2 for details on speedup).

In contrast then to most GP problems, our proposed benchmark possess a unique

solution, although that solution may be attained in di�erent ways. Unlike the typical

GA's chromosome, in which the structure and length are usually �xed, a GP's trees

are usually subject only to limits on depth, or the number of nodes, and these

are provided only as computational limits, i.e. limits to allow the GP to compute

e�ectively on a particular computer, not as a problem limit. Therefore, in order to

judge how parsimoniously a GP system can perform, it would be useful to have a

family of benchmarks that contain unique solutions.

15.2 Benchmarks

Our goal was to devise a problem for GP that would share some characteristics

of the royal road problem. We saw very little evidence of such work in the litera-

ture. The only reference we have been able to �nd up to the time of this writing

was the dissertation of W. A. Tackett [Tackett 1994], who incorporated so-called

\constructional problems" like the royal road into his research on GP.

The royal tree consists of a single base function that is specialized into as many

cases as necessary, depending on the desired complexity of the resulting problem.

We de�ne a series of functions, a, b, c, etc. with increasing arity. (An a function

has arity 1, a b has arity 2, and so on.) We also de�ne a number of terminals x, y,



a

x

a

x

a

x

a

x

a

x

a

x

a

x

b

a

x

a

x

bb b

level-b treelevel-a tree

c

level-c tree

Figure 15.1:

A Perfect level-a, level-b and level-c Royal Tree.

z. For any depth, we de�ne a \perfect" tree as shown in Figure 15.1. A level-a tree

is an a with a single x child. A level-b tree is a b with two level-a trees as children.

A level-c tree is a c with three level-b trees as children, and so on. A level-e tree

has depth 5 and 326 nodes, while a level-f tree has depth 6 and 1927 nodes.

The raw �tness of the tree (or any subtree) is the score of its root. Each function

calculates its score by summing the weighted scores of its direct children. If the

child is a perfect tree of the appropriate level (for instance, a complete level-c tree

beneath a d node), then the score of that subtree, times a FullBonus weight, is added

to the score of the root. If the child has the correct root but is not a perfect tree,

then the weight is PartialBonus. If the child's root is incorrect, then the weight is

Penalty. After scoring the root, if the function is itself the root of a perfect tree, the

�nal sum is multiplied by CompleteBonus. Typical values used are: FullBonus = 2,

PartialBonus = 1, Penalty = 1

3
, and CompleteBonus = 2. The score base case is

a level-a tree, which has a score of 4 (the a|x connection is worth 1, times the

FullBonus, times the CompleteBonus).

The reasoning behind this \stair-step" approach to the function is based on the

reasoning originally used by the royal road. Many combinations of solutions can be

found through genetic combination, but each proper combination gives a big jump

in evaluation credit. The FullBonus is provided to give a large credit to those trees

that �nd the correct, complete royal tree child. Since a deeper royal tree, such as a

level-f tree, has a number of complete royal trees as children, each complete subtree

found gives a large credit to that particular solution. The PartialBonus is used to

give credit for �nding the proper, direct child for a node, even if that direct child

is not the root of a royal tree. This pressure is not as great as the FullBonus, but



C

B

A A AA

B

X XXX

A

X

A

X

B

C

B

AA

B

XX

A

X

A

X

B

X X

[(32*2)+(32*2)+32*2)]2 [(32*2)+(32*2)+(2/3*1)]

128.66384

C

A

X

A

X

B X X

[(32*2)+(1*1/3)+(1*1/3)]

64.66

Figure 15.2:

Some example royal trees with scores, and the process used to derive those scores

it is an e�ective incentive since the score is determined recursively down the tree

and each node receives some credit when if �nds its proper, direct children. If a

node does not have the correct, direct children, it is penalized by Penalty, making

the FullBonus and PartialBonus even more e�ective. Finally, if the resulting tree

itself is complete, then a very large credit is given. Some examples of complete and

partial royal trees are shown in Figure 15.2. In this �gure, the method of scoring is

given. For example, in the leftmost tree, the score of a complete level-b tree is 32,

so the score of a complete level-c tree is [(32 � FullT ree) + (32 � FullT ree) + (32 �

FullT ree)] � CompleteT ree.

The reasoning behind the increase in arity required at each increased level of the

royal tree is simple, we wanted to make a hard problem (and we demonstrably did,

please see the result sections) for GP to solve. That is, we could simply have required

that a proper ordering of say a b-function (multiple levels of a 2-arity function) for

the tree, but requiring increasing arity as we climb to the next level dramatically

increases the di�culty of the problem, and provides a measure of how well a GP

can perform. For example, it is extremely di�cult to climb to a level-f tree and we

have never succeeded in climbing to level-g.

15.2.1 Di�erences Between Royal Road and Royal Tree

There are a number of di�erences worth noting between Holland's royal road func-

tions and our royal tree function. The �rst is that we do not explicitly introduce

deception into our functions. In fact, we did provide a method whereby we could

introduce deception, namely the existence of 3 terminals: x, y and z. The x is the



only terminal allowable for a complete royal tree, but we could modify the �tness

function so that connection of a y or z terminal gives deception, that is y and z

would give a short-term high �tness to a tree using them as terminals, but only

a x terminated tree would get the FullBonus and CompleteBonus boosts. We did

not use this deception in the present problems since the royal tree in fact appeared

quite di�cult already without explicit deception.

The other interesting idea that Holland used and we did not was the concept of

introns. An intron for a GP is essentially a group of non-functional nodes that simply

\�ll space" in the tree. When the tree is evaluated, the intron is ignored (essentially

extracted from the tree). An intron can serve as \protection" for important subtrees

from destructive crossovers. That is, crossover or mutation on the intron portion of

a tree does not change the evaluation of the real function nodes of the tree. Thus

subtrees can evolve intron \padding" to surround important subtrees, protecting

them from disruption. Others have investigated the e�ect of such features on GA

operation [Levenick 1995]. This is a very interesting area and we are presently

experimenting with introns to address some of the di�culties we encountered in

solving royal trees.

15.3 Single Population Results

We compare runs between the arti�cial ant problem using the Santa Fe trail (maxi-

mum 400 time steps)[Koza 1992, pg 147] and a level-e royal tree. We choose the ant

because, of all standard problems listed by Koza[Koza 1992], it was the most simi-

lar in terms of the the structure of the function sets and terminals (no Ephemeral

Random Constants for example) and it requires only a modest amount of time to

solve (unlike, for example, the 11 multiplexer). For the ant problem, the maximum

�tness was 89; for the royal tree, the maximum �tness was 122,880 given the weight-

ing scheme described above. All runs were done in replicates of 16, with a maximum

of 500 generations.

The common parameters for these runs were as follows: population size of 3500,

90% internal-point crossover and 10% external-point crossover, maximum tree depth

of 17, maximum tree size of 750 nodes, and initialization using the ramped half-and-

half method with initial depths between 2 and 7 inclusive. We ran the experiments

under a number of conditions that used over-selection versus proportional selection,

and with or without mutation. We de�ne over-selection per Koza[Koza 1992, pg 98],

that is we select 80% of the time from a subset of the population which constitutes

the top z% of the population's �tness when the population is sorted in �tness order.

The calculation of z is based on the formula 320=popsize, or 32% for popsize � 1000,



Table 15.1:

Single Population Results

Pc = 0:9; Pr = 0:1; Pm = 0:0 Pc = 0:875; Pr = 0:075; Pm = 0:05
Problem

Over-selection Prop. Selection Over-selection Prop. Selection

W : (7; 156) W : (2; 265) W : (10; 109) W : (7; 112)
ant

L : (9; 78; 198) L : (14; 68; 208) L : (6; 73; 300) L : (9; 67; 158)
W : (1; 145) W : (0; 0) W : (8; 233) W : (0; 0)

royal tree
L : (15; 6144; 47) L : (16; 71; 85) L : (8; 9046; 159) L : (16; 71; 92)

16% for popsize = 2000 and so on. Results are shown in Table15.1 below. In the

Table,W : (x; y) represents the number of wins (�nding completely correct solutions

before 500 generations), where x is the number of runs that were wins, and y is the

average generation number in which the correct answer occurred. L : (a; b; c) is the

number of losses (no correct solution after 500 generations), where a is the number

of runs that were losses, b is the average best-of-run �tness, and c is the average

generation the last best-of-run occurred in.

Finally, in the table Pc is the crossover rate, Pr the reproduction rate, and Pm
is the mutation rate.

15.3.1 Discussion of Single Population Results

As expected, over-selection for a population size of 3500 out-performed proportional

selection in all instances. This di�erence, however, was much more dramatic in the

royal tree than in the ant problem, since in 32 runs the royal tree never found a

solution using proportional selection. In fact, the royal tree averaged a �tness of only

71 (out of 122,880) in those 32 runs using proportional selection, and never improved

that performance after around the 90th generation out of the 500 generations.

Furthermore, mutation improved the performance of both problems under both

selections, though again the di�erence was most dramatic in the over-selection case

for the royal tree. In over-selection without mutation, only one correct answer was

found. In particular we note that the average best-of-run �tness for over-selection

without mutation was 6144, the score for a level-d tree, suggesting that all but one

population got stuck at a local optimum of a level-d tree. However, over-selection

with mutation found 8 correct answers with an average best-of-�tness for the in-

correct answers of 9046. This behavior is due to the royal tree's susceptibility to a

kind of convergence not usually found in other problems. In solving the royal tree

problem, the GP must �rst discover a level-b tree before it solves the level-c tree,

a level-c tree before solving the level-d tree etc. This often means that higher level



0

20000

40000

60000

80000

100000

120000

140000

0 50 100 150 200 250 300 350 400 450

GP plot royal0, fitness

mean fit, gen
best ind, gen
best ind, run

Figure 15.3:

Fitness (y-axis) vs. Generation Plot of a Successful Royal Tree Run

trees such as level-e or level-f cannot be formed since most of their e and f nodes

are lost before they can be used. Mutation solves this dilemma by introducing these

nodes back into the population.

This convergence behavior can be seen clearly in the following two �gures. Figure

15.3 shows typical performance of a royal tree run that succeeded, Figure 15.4 shows

typical performance of a royal tree run that did not �nd the solution (it found a

local optimum from which it could not escape. Note the change of scale of the

y coordinate for increased detail). Note also that the successful run made steady

progress, followed by a \leap" at the end where it discovered the �nal solution. The

failed run hit the local optimum and made no progress after that.



116000

117000

118000

119000

120000

121000

122000

123000

0 50 100 150 200 250 300 350 400 450 500

GP plot royal6, fitness

mean fit, gen
best ind, gen
best ind, run

Figure 15.4:

Fitness (y-axis, note scale) vs. Generation Plot of an Unsuccessful Royal Tree Run

15.4 Coarse-Grain Parallel GPs

There are a number of approaches that can remedy the premature convergence seen

in Figure 15.4. One of the most appealing is parallelization of GA's (PGA's) or

GP's (PGP's), which produces a more realistic model of evolution than a single

large population. Most of this kind of parallel processing work has been done in the

area of PGA's. In GA literature [Lin et. al. 1994; Manderick and Spiessens 1989;

Mulhenbein 1989; Starkweather et. at. 1991; Tanese 1989], it is has been shown that

PGA's both decrease processing time and better explore the search space. Unlike se-

quential GA's which pay a high computational cost for maintaining subpopulations

based on similarity comparisons, PGA's maintain multiple, separate subpopulations

which may be allowed to evolve independently. This allows each subpopulation to

explore di�erent parts of the search space, each maintaining its own high-�tness

individuals and controlling how mixing occurs with other subpopulations, if at all.



There are three parallel architectures reported in the literature: micro-grain, �ne-

grain and coarse grain (also called island-parallel) [Lin et. al. 1994]. We will focus

here on coarse-grain work.

Coarse-grain GAs (cgGAs) maintain independent subpopulations (often referred

to as "islands", giving rise to the term "island parallel GAs") which occasionally

exchange solutions. The frequency of migration among subpopulations is typically

small, and is selected so as to achieve a problem-speci�c balance between combining

good schemata (building blocks) discovered in di�erent subpopulations and allow-

ing the subpopulations to search relatively independently (i.e., promoting diver-

sity). Coarse-grain GAs have been shown to outperform "serial" GAs dramatically

in many contexts. We have categorized cgGAs according to three characteristics:

migration method (isolated island, synchronous island, or asynchronous island),

connection scheme (static or dynamic), and node homogeneity (homogeneous or

heterogeneous) [Lin et. al. 1994].

15.4.1 Injection Island GAs

We have begun work on a new PGA architecture called injection island GA's

(iiGA's). iiGA's are a class of asynchronous, static- or dynamic-topology, hetero-

geneous node GA's. The two most interesting aspects of an iiGA are its migration

rules and the heterogeneous nature of its nodes.

15.4.1.1 iiGA Heterogeneity

GA problems are typically encoded as an n-bit string which represents a complete

solution to the problem. However, for many problems, the resolution of that bit

string can be allowed to vary. That is, we can represent those n bits in n0 bits,

n0 < n, by allowing one bit in the n0-long representation to represent r bits, r > 1,

of the n-long bit representation. In such a translation, all r bits take the same value

as the one bit from the n0-long representation and vice-versa. Thus the n0-long

representation is an abstraction of the n-long representation. More formally, let:

n = p� q (15.1)

where p and q are integers, p; q � 1. Once p and q are determined, we can re-encode

a block of bits p0 � q0 as 1 bit if and only if

p = l� p0; q = m� q0 (15.2)

where l and m are integers, l;m � 1.



Such an encoding has the following basic properties:

1. The smallest block size is 1� 1. The search space is 2n.

2. The largest block size is p� q. The search space is 21 = 2.

3. The search space with a block size p0 � q0 is 2p=p
0

� 2q=q
0

.

An iiGA has multiple subpopulations that encode the same problem using dif-

ferent block sizes. Each generates its own "best" individual separately1

15.4.1.2 iiGA migration rules

An iiGA may have a number of di�erent block sizes being used in its subpopu-

lations. To allow interchange of individuals, we only allow a one-way exchange of

information, where the direction is from a low resolution to a high resolution node.

Solution exchange from one node type to another requires translation to the ap-

propriate block size, which is done without loss of information from low to high

resolution. One bit in an n0-long representation is translated into r bits with the

same value in an n-long representation. Thus all nodes inject their best individual

into a higher resolution node for "�ne-grained" modi�cation. This allows search to

occur in multiple encodings, each focusing on di�erent areas of the search space.

More formally, we note that node x with block size p1xq1 can pass individuals to

node y with block size p2� q2 if and only if

p1 = j � p2; q1 = k � q2 (15.3)

where j, k are integers and j; k � 1. This establishes a hierarchy of exchange, where

node x (lower resolution) is the child of node y (higher resolution) and node y is

the parent of node x.

15.4.1.3 iiGA Advantages

iiGA's have the following advantages over other PGA's:

� Building blocks of lower resolution can be directly found by search at that reso-

lution. After receiving lower resolution solutions from its parent node(s), a node of

higher resolution can "�ne-tune" these solutions.

1This is not the same as the dynamic parameter encoding (DPE) feature of GAucsd 1.4 [Schrau-
dolph and Grefenstette 1992].



� The search space in nodes with lower resolution is proportionally smaller. This re-

sults in �nding "�t" solutions more quickly, which are injected into higher resolution

nodes for re�nement.

� Nodes connected in the hierarchy (nodes with a parent-child relationship) share

portions of the same search space, since the search space of parent is contained in

the search space of child. Fast search at low resolution by the parent can potentially

help the child �nd �tter individuals.

� iiGA's embody a divide-and-conquer and partitioning strategy which has been

successfully applied to many problems. Homogeneous PGA's cannot guarantee such

a division since crossover and mutation may produce individuals that belong to

many subspaces {i.e., the divisions cannot be maintained. In iiGA's, the search

space is fundamentally divided into hierarchical levels with well de�ned overlap (the

search space of the parent is contained in the search space of the child). A node with

block size r = p0 � q0 only searches for individuals separated by Hamming distance

r.

� In iiGA's, nodes with smaller block size can �nd the solutions with higher reso-

lution. Although DPE [Schraudolph and Grefenstette 1992] and ARGOT [Shaefer

1987] also deal with the resolution problem using zoom or inverse zoom operators,

they are di�erent from iiGA's. First, they are working on the phenotype level and

only for real-valued parameters. iiGA's divide the string into small blocks regardless

of the meaning of each bit. Second, the sampling error can fool them into prema-

turely converging on sub-optimal regions. Unlike PDE and ARGOT, iiGA's search

di�erent resolution levels in parallel and reduce the risk of searching the wrong

target interval.

15.4.2 Speedup and Super Linear Speedup

We would like to take a brief aside concerning the term \speedup" and what it

means to GA/GP researchers. Speedup is a term from parallel processing that

indicates the amount of time gained by running an algorithm on many processor

versus one processor[Amdahl 1967; Quinn 1987]. Thus the best speedup one can

obtain is \linear speedup", that is the time n needed to perform the algorithm on

a single processor can be reduced to n=p on p processors.

However, it is convenient to measure other forms of e�ort, especially in areas

such as GP. We have often used the \number of evaluations" required, instead of

time, as the measure of e�ort needed to determine the speedup ratio. This avoids



the problems of running an algorithm on di�erent kinds of processors, making the

measure hardware independent. Using such a measure we have often been able to

�nd \super-linear" speedups, which on the surface appears impossible (how can we

get more speedup than a ratio of the number of processors used).

We can explain super-linear speedup for coarse-grain parallel GPs by dividing

the speedup into two parts. The �rst part is the speedup provided by running the

GP on multiple processors. Running a GA or a GP on multiple processors is in fact

rather simple, so simple in fact that it is often called \embarrassingly" parallel. For

example we can divide the evaluation function evaluations of the population across

multiple processors (micro-grain), or as in this chapter divide one large population

into multiple smaller populations on multiple processors (coarse-grain). All of these

approaches give linear (or very nearly linear depending on the particular applica-

tion) speedup. The second speedup comes from the number of evaluations saved

by running multiple subpopulations vs a single population. We and others have

shown that the interaction of multiple, small subpopulations of GAs requires fewer

evaluations to reach the same quality of answer than a single large population [Lin

et. al. 1994]. These two pieces together, the speedup from multiprocessing and the

speedup from small, interacting subpopulations, is where we get our super-linear

speedups.

It is for this reason that we often conduct experiments on a single processor with

multiple subpopulations, to see if we indeed get the multi-population speedup since

we know it is relatively simple to get the multiprocessor speedup.

15.5 Parallel GPs

Our goal is to see if the coarse-grain parallel processing techniques described in

Section 15.4 apply in the realm of PGP's. In particular, we wished to investigate

the e�ects various topologies, such as a ring topology and our injection architecture

topology would have on a PGP as compared to a similarly sized single population

on both the ant and the royal tree problem.

The parallel runs used the same parameters as the single population runs with

the following di�erences. The ring architecture consisted of 7 subpopulations of 500

each (total 3500, same as the single population runs), exchanging the 5 best solutions

to its single neighbor every 10 generations (i.e., 1 ! 2 ! � � � ! 7 ! 1.) The

injection architecture was set up as follows. We created a hierarchical arrangement

of 7 subpopulations of 500, where 6 of the subpopulations were the leaves of a tree

to the root 7th subpopulation. The 6 leaf subpopulations \injected" their 5 best

solutions (total of 30) to the seventh root subpopulation every 10 generations. There



Ring Architecture Injection Architecture

Figure 15.5:

The Parallel Topologies Used for the Parallel Processing Experiments

is no communication between the six leaf subpopulations, only a one-way injection

of information ([1; : : : ; 6] ! 7). In all cases the new solutions introduced into a

subpopulation replace the worst individuals in that subpopulation. Thus if 5 new

solutions are introduced, we chose to remove the 5 worst solutions, though lilgp

does allow us to use any selection method we choose. The two con�gurations are

shown in Figure 15.5.

Strictly speaking, this is not an injection architecture in the sense we have just

previously described, as we are not using a di�erent representation for each of the 6

leaf subpopulations. However, each of the leaves is starting with a di�erent random

seed and therefore beginning in di�erent parts of the search space.

Table 15.2shows the results of the parallel runs under the same variation in

conditions used in the single population runs.

15.5.1 Discussion of Multi-population Results

Clearly the most surprising aspect of these results was the fact that no multi-

population approach found a single correct answer for the royal tree problem out



Table 15.2:

Multi-population Results. The �rst two columns use mutation, the second two do not

Ring Architecture Multi-population Runs

Pc = 0:9; Pr = 0:1; Pm = 0:0 Pc = 0:875; Pr = 0:075; Pm = 0:05
Problem

Over-selection Prop. Selection Over-selection Prop. Selection
W : (4; 160) W : (7; 286) W : (6; 208) W : (7; 240)

ant
L : (12; 68; 312) L : (9; 71; 257) L : (10; 74; 313) L : (9; 73; 244)
W : (0; 0) W : (0; 0) W : (0; 0) W : (0; 0)

royal tree
L : (16; 10005; 338) L : (16; 83; 62) L : (16; 16284; 373) L : (16; 76; 181)

Injection Architecture Multi-population Runs

Pc = 0:9; Pr = 0:1; Pm = 0:0 Pc = 0:875; Pr = 0:075; Pm = 0:05
Problem

Over-selection Prop. Selection Over-selection Prop. Selection
W : (2; 297) W : (8; 270) W : (2; 116) W : (6; 309)

ant
L : (14; 70; 326) L : (8; 70; 272) L : (14; 70; 304) L : (10:74:256)
W : (0; 0) W : (0; 0) W : (0; 0) W : (0; 0)

royal tree
L : (16; 20764; 395) L : (16; 81; 152) L : (16; 18354; 405) L : (16; 83; 192)

of 128 runs. There was however a large di�erence in the performance of these runs.

The over-selected royal trees average best-of-run �tness was very high relative to

the proportional cases, though mutation did not appear to play as signi�cant a role

as it did in the single population situations. For the ant problem, parallel processing

did not improve performance except for the case of proportional selection, where

without mutation there was an increase in performance over the single population.

We were surprised by these results since in our GA applications we had always

seen an increase in performance with coarse-grain parallelism. However, not only

did we not observe a performance gain, but also the royal tree coarse-grain paral-

lelism was apparently detrimental to performance. When we look at an example ant

problem result under injection, we see in Figure 15.5 the kind of performance we

expected and the kind we had seen in previous GA applications. Subpopulation 7,

the injected subpopulation, shows and increase in performance, presumably due to

the injection of improved building blocks from the other subpopulations. However,

we did not observe the kind of performance of Figure 15.5 more that 50% of the time

in the ant problem, and we never saw such performance on the royal tree problem.

15.5.2 Variations on Exchange Rate Experiments

In an unpublished tech report, Koza and Andre [Koza and Andre 1995] reported

on parallel GP's implemented on a 64 node transputer using a kind of \�ne grain"



0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

GP Multiplot, injection, ant, Best Of Generation Individual

best: pop1
best: pop2
best: pop3
best: pop4
best: pop5
best: pop6
best: pop7

Figure 15.6:

Fitness (y-axis) vs. Generations of a Successful Ant Problem using the Injection Architecture

parallelism. Here, the nodes were laid out in an 8 � 8 array, and exchange was

done between a node and its local 4 neighbors. Koza and Andre also did a high

level of exchange, exchanging 20% or more of the populations on each exchange.

We had previously avoided such high exchange rates in our GA work since high

rates approach a panmictic population, preventing us from investigating the e�ect of

coarse-grain parallelism. However, Koza and Andre achieved \super-linear" speedup

(see Section 15.4.2) with 64 (in an 8x8 grid con�guration, with exchange between

the 4 neighbors) transputer processors. This means that they are apparently getting

multi-population speedup. We therefore conducted a series of experiments using a

variety of exchange rate to see if we could also �nd this multi-population speedup

component. We used a base con�guration of the best previous multi-population

results (over-selection, mutation) and exchange every 10 generations. For the ring

architecture we compared exchanges of 10, 50 and 100 individuals per exchange.



Table 15.3:

Increased Exchange Results using Over-selection and Mutation

Ring Architecture

Problem Over-selection, Pc = 0:875; Pr = 0:075; Pm = 0:05
Exchange 10 Exchange 50 Exchange 100

W : (6; 208) W : (4; 207) W : (5; 192)
ant

L : (10; 74; 313) L : (12; 75; 328) L : (11; 72; 304)
W : (0; 0) W : (2; 437) W : (2; 477)

royal tree
L : (16; 16284; 373) L : (14; 17100; 316) L : (14; 15842; 399)

Injection Architecture

Over-selection, Pc = 0:875; Pr = 0:075; Pm = 0:05
Problem Exchange 5 Exchange 20 Exchange 40

W : (2; 116) W : (3; 171) W : (4; 157)
ant

L : (14; 70; 304) L : (13; 69; 287) L : (12; 68; 333)
W : (0; 0) W : (0; 0) W : (0; 0)

royal tree
L : (16 : 18354; 405) L : (16; 20157; 390) L : (16; 29045; 427)

For the injection architecture, we compared 5, 20 and 40 individuals injected from

each leaf subpopulation into the root subpopulation. These results are shown in

Table 15.3.

15.5.3 Discussion of Exchange Experiments

Though some aspects of the performance improved by increasing the exchange rate,

especially for the ant problem, the gain was not nearly as much as was needed to

equal the single population performance. The ant under a ring architecture typically

had about 5 wins, but did show some slow improvement under increasing exchange

rates for an injection architecture. The royal tree �nally did �nd some solutions

using increased exchange in a ring architecture, but again no solutions were found

using an injection architecture. However, note that the \failure" value in the losses

of the injected royal tree again steadily improved under exchange rate increase. In

fact, examination of the injected royal-tree solutions shows that indeed the \failed"

solutions are rather close. Many have the e root as required, as well as two or three

full level-d tree subtrees hanging o� the e.



15.6 Overall Discussion

Our previous work with GAs and parallel architectures showed dramatic improve-

ment of performance, both in terms of better answers and in terms of fewer genera-

tions required to achieve such answers. This is clearly not the case for all GP prob-

lems. The ant problem showed dramatic improvement using �tness-proportionate

selection for both rings and injection, but showed loss of performance using over-

selection. The royal tree did well with a single population, over-selection, and mu-

tation, but worse under all parallel conditions, though the average loss-scores in the

parallel runs did improve. However, it is not clear what we can deduce from changes

of the losses since this change does not in any way indicate that the average score

for ALL the runs increases as you e�ectively removed the winning runs that would

have helped this average score. More interesting are the graphs of multiple popula-

tion progress under injection. Here, the ant can show (but does not always show) a

dramatic improvement in the injected population's average �tness, while the royal

tree does not clearly show such an e�ect. Our hypothesis are twofold: �rst, there is

a \stair-step" action seen with the royal tree, that each subpopulation must solve

level-c to get to level-d, level-d to get to level-e, etc. This synchronizes the subpopu-

lations to an extent that prevents parallel architecture from increasing diversity and

therefore performance. Second, the fact that the royal tree is looking for a single

correct answer belies the fact that the parallel operations did increase the average

best-�tness value for failed runs. Again, upon examination of those missed answers

it was clear that the subpopulations were indeed making progress and getting close

to the answers (for example, an e root with 3 of the 5 level-d children). However,

they did not perform better than the single populations.

Moreover, further research on increased exchange rates following the work of

Koza and Andre showed some improvement of performance, but not up to the level

of a single large population. More work is required to con�rm these �ndings. We feel

that the royal tree provides a fresh perspective on \performance," one that practical

GP applications will have to face.

References

Amdahl, G. (1967), \Validity of the Single processor Approach to Achieving Large Scale Comput-
ing Capabilities," Proceedings AFIPS Conference, Vol. 30, pp.483-485, Thompson Books, Wash-
ington, D.C.

Jones, T (1994). \A Description of Holland's Royal Road Function," Evolutionary Computation,
2(4), pp. 409-415



Koza, J.R. and D. Andre (1995) \Parallel Genetic Programming on a Network of Transputers."
Stanford Tech Report STAN-CS-TR-95-1542, January.

Koza, J.R.(1992) Genetic Programming. Bradford/MIT Press.

Levenick, J.R. (1995)\Metabits: Generic endogenous crossover control," Sixth International Con-

ference on Genetic Algorithms, pp 88-95, Morgan Kaufmann

Lin, S.-C., W. F. Punch, and E. D. Goodman (1994) \Coarse-grain parallel genetic algorithms:
Categorization and new approach." Sixth IEEE SPDP, pp 28{37, October.

Manderick B., and P. Spiessens (1989), \Fine-Grained Parallel Genetic Algorithms," Third Inter-

national Conference on Genetic Algorithms, pp. 428-433, June.

Muhlenbein, H. (1989) \Parallel Genetic Algorithms, Population Genetics and Combinatorial Op-
timization," Third International Conference on Genetic Algorithms, pp. 416-421, June.

Punch, W. F., R. C. Averill, E. D. Goodman, S.-C. Lin, and Y. Ding (1995)\Design using ge-
netic algorithms|some results for composite material structures." IEEE Expert, 10(1), pp 42-49,
February.

Quinn, M.J. (1987) Designing E�cient Algorithms for Parallel Computers, McGraw-Hill, NY.

Shaefer, C. G. (1987), \The ARGOT Strategy: Adaptive Representation Genetic Optimizer Tech-
nique," Proceedings. Second ICGA, pp. 50-55, July.

Schraudolph, N. and J. Grefenstette (1992), \A User's Guide to GAucsd 1.4," July.

Starkweather, T., D. Whitley and K. Mathias (1991), \Optimization Using Distributed Genetic
Algorithms," PPSN, pp. 176-185.

Tackett, W. A. (1994) \Recombination, Selection, and the Genetic Construction of Computer
Programs." PhD thesis, University of Southern California, April.

Tanese, R (1989) \Distributed Genetic Algorithms," Third International Conference on Genetic

Algorithms, pp. 434-440, June.


