Royal Trees as a Benchmark Problem for Genetic Programming:
A Parallel Processing Example
Bill Punch, Doug Zongker, and Erik Goodman
MSU GARAGe (Genetic Algorithms Research and Applications Group)
punch@cps.msu.edu, zongker@cps .msu. edu, goodman@egr .msu.edu

submit for WORKSHOP and BOOK

1 Introduction

In the fall of 1994 we began work on a general purpose genetic programming tool called
lilgp. We had multiple objectives in designing this system, including: making it as fast and
memory efficient as possible, making it portable enough to run on a wide variety of machines,
and providing support for a number of features not typically found in other GP systems,
especially support for parallel processing. This support for parallel processing was focused
not so much on the ability to run on multiple machines (though this is indeed possible) but
instead to provide support for experiments using multiple, interacting subpopulations. We
have had considerable experience in these kinds of experiments with GAs and wanted to
transfer that expertise to GP[2,3].

2 Benchmarks

We began to turn our attention to benchmark programs for GPs. We implemented a number
of problems from GP I[1]: the Boolean 11-multiplexer, artificial ant, symbolic regression, pole-
balancer, and hamstrung squad car and tried to compare the results but were looking for
something more definitive. As GA researchers we began work on a royal road-type problem[4].
Holland’s royal road serves two purposes. First, it provides proof-of-principle for the kind
of difficult problems, exhibiting deception, that a genetic algorithm is capable of solving.
Second, it serves as a benchmark of performance for tuning GA parameters. At [CGA93,
Holland claimed a specialized, properly tuned GA could solve all but the last level of a 4-level
royal road problem in 10,000 evaluations or less.

Our goal then was to try and devise a “royal tree” problem for GP that would share some
characteristics of the royal road problem: it would be a difficult program that would show
the capabilities of the GP and also provide a benchmark for tuning GP parameters. We saw
very little evidence of such work in the literature. The only reference we have been able to
find up to the time of this writing was the dissertation of W. A. Tackett[4], who incorporated
so-called “constructional problems” like the royal road into his research on GP.

We also wanted to incorporate another feature into our function. One of the main diffi-
culties in evaluating how well a GP worked was that problem performance was nearly the
only measure of quality. If the GP solved the problem, it worked. Unfortunately, a GP could
generate an infinity of programs to solve any particular problem. It seemed to us that tree
structure should also be an issue. This seemed like the kind of realistic restriction that a GP
solving a practical problem would have to face. Finally, we wanted our function to have a pro-
gression of “correct” answers, with the level of the problem dictating the level of complexity
faced by the GP.

The royal tree consists of a single base function that is specialized into as many cases as
necessary, depending on the desired complexity of the resulting problem. We define a series
of functions, a, b, ¢, etc. with increasing arity. (An a function has arity 1, a b has arity 2, and
so on.) We also define a number of terminals x, y, z. For any depth, we define a “perfect”

b b b b
a a a a a a a a a
X X X X X X X X X
level-atree level-b tree level-ctree

tree as shown in Figure 2. A level-a tree is an a with a single x child. A level-b tree is a b
with two level-a trees as children. A level-c tree is a ¢ with three level-b trees as children,
and so on. A level-e tree has depth 5 and 326 nodes, while a level-f tree has depth 6 and
1927 nodes.

The raw fitness of the tree is the score of its root. Each function calculates its score by
summing the weighted scores of its children. If the child is a perfect tree of the appropriate
level (for instance, a complete level-c tree beneath a d node), then the weight is FullBonus.
If the child has the correct root but is not a perfect tree, then the weight is PartialBonus. If
the child’s root is incorrect, then the weight is Penalty. In addition, if the function is itself
the root of a perfect tree, the final sum is multiplied by Complete Bonus. Typical values used

are: FullBonus = 2, PartialBonus = 1, Penalty = %, and CompleteBonus = 2.

3 Results

We compare runs between the artificial ant problem (Santa Fe trail, maximum 400 steps)
and level-e royal tree. For the ant problem, the maximum fitness was 89; for the royal
tree, the maximum fitness was 122,880. We did two major groups of runs—runs with single
populations and run with multiple populations. All runs were done in replicates of 16, with
a maximum of 500 generations.

The common parameters for the single population runs were as follows: population size of
3500, 90% internal-point crossover and 10% external-point crossover, maximum tree depth
of 17, maximum tree size of 750 nodes, and initialization using the ramped half-and-half
method with initial depths between 2 and 7 inclusive.

Parallel runs used the same parameters as the single population runs with the following
differences. We conducted runs using two different parallel processing architectures. The first
was a ring architecture of 7 subpopulations of 500 each (total 3500), exchanging the 5 best
solutions to its single neighbor every 10 generations (i.e., 1 =2 — --- — 7 — 1.) The other
was an injection architecture, a hierarchical arrangement where 6 subpopulations of 500 gave
their 5 best solutions (total of 30) to a seventh subpopulation (also of 500), every 10 gener-
ations. There is no communication between the six, only a one-way injection of information
([1,...,6] — 7). We have previously used injection architecture in GA applications and
shown super-linear speedup in terms of number of evaluations needed to reach a particular
quality of solution: the more subpopulations, the fewer total evaluations required|[2].

In Table 1, W : (z,y) represents the number of wins (finding completely correct solutions),
where z is the number of runs that were wins, and y is the average generation number the win
occurred in. L : (a,b,¢) is the number of losses (no correct solution after 500 generations),
where a is the number of runs that were losses, b is the average best-of-run fitness, and c is
the average generation the last best-of-run occurred in.

Problem P.=09F. =0.1,P, =0.0 P.=0.875,F, =0.075, P,, =0.05
Overselection ‘ Prop. Selection | Overselection ‘ Prop.selection
Single Population Runs
ant W . (7,156) W (2,265) W :(10,109) W (7,112)
L:(9,78,198) L :(14,68,208) | L : (6,73,300) L :(9,67,158)
royal tree W (1,145) W (0,0) W (8,233) W :(0,0)
L :(15,6144,47) L:(16,71,85) | L:(8,9046,159) L:(16,71,92)
Ring Architecture Multipopulation Runs
ant W : (4,160) W (7,286) W : (6,208) W (7,240)
L :(12,68,312) L:(9,71,257) | L:(10,74,313) L :(9,73,244)
royal tree W :(0,0) W (0,0) W :(0,0) W :(0,0)
L :(16,10005,338) | L:(16,83,62) | L:(16,16284,373) | L :(16,76,181)
Injection Architecture Multipopulation Runs
ant W :(2,297) W (8,270) W :(2,116) W :(6,309)
L :(14,70,326) L:(8,70,272) | L:(14,70,304) L :(10.74.256)
royal tree W :(0,0) W (0,0) W :(0,0) W :(0,0)
L :(16,20764,395) | L:(16,81,152) | L : (16,18354,405) | L : (16,83,192)

Table 1: Results

4 Discussion

Our previous work with GAs and parallel architectures showed dramatic improvement of
performance, both in terms of better answers and in terms of fewer generations required
to achieve such answers. This is clearly not the case for all GP problems. The ant problem
showed dramatic improvement using fitness-proportionate selection for both rings and injec-
tion, but showed loss of performance using overselection. The royal tree did well with a single
population, overselection, and mutation, but worse under all parallel conditions, though the
average loss-scores in the parallel runs did improve. More interesting are the graphs of multi-
ple population progress under injection (not shown here due to space). Here, the ant shows a
dramatic improvement in the injected population average fitness, while the royal tree shows
no such effect. Our hypothesis is that there is a “stairstep” action seen with the royal tree,
that each subpopulation must solve level-c to get to level-d, level-d to get to level-e, etc.
This synchronizes the subpopulations to an extent that prevents parallel architecture from
increasing diversity and therefore performance. More work is required to confirm these find-
ings. We feel that the royal tree provides a fresh perspective on “performance,” one that
practical GP applications will have to face.

95 Bibliography

1. J. R. Koza. Genetic Programming. Bradford/MIT Press, 1992.

2. S.-C. Lin, W. F. Punch, and E. D. Goodman. Coarse-grain parallel genetic algorithms:
Categorization and new approach. Sizth [EFEE SPDP, pages 28-37, October 1994.

3. W. F. Punch, R. C. Averill, E. D. Goodman, 5.-C. Lin, and Y. Ding. Design using genetic
algorithms—some results for composite material structures. [EEE Expert, 10(1), Feb 1995.
4. W. A. Tackett. Recombination, Selection, and the Genetic Construction of Computer
Programs. PhD thesis, University of Southern California, April 1994.

