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Abstract

A large number of algorithms have been proposed for
doing feature subset selection. The goal of this paper is
to evaluate the quality of feature subsets generated by the
various algorithms, and also compare their computational
requirements. Our results show that the sequential forward
floating selection (SFFS) algorithm, proposed by Pudilet
al., dominates the other algorithms tested. This paper also
illustrates the dangers of using feature selection in small
sample size situations. It gives the results of applying fea-
ture selection to land use classification of SAR satellite im-
ages using four different texture models. Pooling features
derived from different texture models, followed by a feature
selection results in a substantial improvement in the classi-
fication accuracy. Application of feature selection to clas-
sification of handprinted characters illustrates the value of
feature selection in reducing the number of features needed
for classifier design.

1. Introduction

The problem of feature selection is to take a set of candi-
date features and select a subset that performs the best under
some classification system. This procedure can reduce not
only the cost of recognition by reducing the number of fea-
tures that need to be collected, but in some cases it can also
provide better classification accuracy due to finite sample
size effects [2]. There has been a resurgence of interest in
applying feature selection methods due to the large numbers
of features encountered in the following types of problems:
(1) Applications where data taken by multiple sensors are
fused. (2) Integration of multiple models, where all the pa-
rameters from the different models can be used for classifi-
cation; and (3) Data mining applications, where the goal is
to recover the hidden relationships among the features.

The goal of this paper is to evaluate the performance of
various feature selection methods on some synthetic data

sets. Several well-known and some recently proposed fea-
ture selection algorithms have been implemented and tested.
Based on these results, the sequential forward floating selec-
tion (SFFS) method introduced in [7] has been found to be
extremely powerful. This method has been applied to large
datasets in two different application domains. Experimen-
tal results indicate that feature selection can not only elim-
inate a large number of redundant features, but also avoid
the curse of dimensionality.

2. Feature Selection Algorithms

Let Y be the original set of features, with cardinalityn.
Let d represent the desired number of features in the se-
lected subsetX, X � Y . Let the feature selection criterion
function for the setX be represented byJ(X). Without
any loss of generality, let us consider a higher value ofJ

to indicate a better feature subset. Formally, the problem
of feature selection is to find a subsetX � Y such that
jXj = d and

J(X) = max
Z�Y;jZj=d

J(Z):

A taxonomy of all the available feature selection algo-
rithms into broad categories is presented in Figure 1. We
first divide methods into those based on statistical pattern
recognition (SPR) techniques, and those using artificial neu-
ral networks (ANN). The SPR category is then split into
those guaranteed to find the optimal solution and those that
may result in a suboptimal feature set. The suboptimal
methods are further divided into those that store just one
“current” feature subset and make modifications to it, ver-
sus those that maintain a population of subsets. Another
distinction is made between algorithms that are determin-
istic, producing the same subset on a given problem every
time, and those that have a random element which could
produce different subsets on every run. Some representa-
tive feature selection algorithms are listed beneath each leaf
node in the tree.
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Figure 1. A taxonomy of feature selection al-
gorithms.

The first group of methods begin with a single solution
(a feature subset) and iteratively add or remove features un-
til some termination criterion is met. These “sequential”
methods can be divided into two categories, those that start
with the empty set and add features (the “bottom-up,” or
“forward” methods) and those that start with the full set and
delete features (the “top-down,” or “backward” methods).
We have implemented the following well-known sequential
algorithms:

SFS Sequential forward selection
SBS Sequential backward selection
GSFS(�) Generalized sequential forward selection
GSBS(�) Generalized sequential backward selection
PTA(l; r) Plusl-take awayr
SFFS Sequential forward floating selection
SFBS Sequential backward floating selection
MM Max-Min search

The two “floating” selection methods are described in Pudil
et al. [7]. All of the other methods are given in detail in Kit-
tler [3]. Siedlecki and Sklansky [9] introduced the use of
genetic algorithms (GA) for feature selection, a technique
that is also evaluated in [1]. The branch-and-bound feature
selection algorithm, proposed by Narendra and Fukunaga
[6], can be used to find the optimal subset of features much
more quickly than exhaustive search. One drawback is that
the branch-and-bound procedure requires the feature selec-
tion criterion function to be monotone, i.e. the addition of
new features to a feature subset can never decrease the value
of the criterion function. We know from the curse of dimen-
sionality phenomenon that in small sample size situations
this may not be true.

Maoet al. [4] use a multilayer feedforward network with
a backpropagation learning algorithm for pattern classifica-
tion. They define anode saliencymeasure and present an
algorithm for pruning the least salient nodes to reduce the
complexity of the network after it has been trained. The
pruning of input nodes is equivalent to removing the corre-
sponding features from the feature set. The node-pruning
method simultaneously develops both the optimal feature
set and the optimum classifier.

3. Experimental Results

We have compared different feature selection algorithms
in terms of classification error and run time on a 20-
dimensional, 2-class Gaussian data set which was used by
Pudil et al. [7]. Our criterion function for assessing the
“goodness” of a feature subset was the Mahalanobis dis-
tance between the class means—the larger the Mahalanobis
distance, the better the feature subset. Maximum likelihood
estimates of the covariance matrix and mean vectors were
computed from the data. A total of thirteen feature selection
algorithms, listed in Table 1, were evaluated and compared.
Execution times reported are processor ticks (0.01 second)

SFS SBS GSFS(2)
GSBS(2) GSFS(3) GSBS(3)
SFFS SFBS PTA((1); (2))
PTA((1); (3)) PTA((2); (3))
Branch-and-Bound Max-Min

Table 1. Feature selection algorithms used in
experimental evaluation.

spent in user space on a SUN SPARCserver 1000. Ten
randomly generated data sets,each with 1,000 patterns per
class were tested and the averages of the runs are reported.
Figure 2 shows the results. The solid line in each figure in-
dicates the optimal result for each target feature subset of
sized, obtained using the branch-and-bound method.

The following conclusions can be drawn based on these
empirical results:

� The Max-Min algorithm, while very fast, gives poor
results compared to the other algorithms.

� The SFS and SBS algorithms have comparable per-
formance, but shownestingproblems. (For instance,
the optimal 3-subset is not contained in the optimal 4-
subset.) The forward method is faster than its back-
ward counterpart, as expected. This is also true of the
generalized methods (GSFS and GSBS).

� The floating methods (SFFS, SFBS) show results com-
parable to the branch-and-bound algorithm and are, for
the most part, faster than it.
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Figure 2. Performance of some feature selec-
tion algorithms: (a) criterion value, (b) execu-
tion time.

� The PTA((l); (r)) methods, while generally giving
near-optimal performance, are far slower than the
branch-and-bound method.

Overall, the floating methods perform better than their
non-floating counterparts, giving near-optimal results
with reasonable execution times.

4. Effect of Training Set Size

How reliable are the feature selection results in the pres-
ence of small amounts of training data? In the case where
Mahalanobis distance is used as the criterion, the error aris-
ing from estimating the covariance matrix can lead the fea-
ture selection process astray, producing inferior results (rel-
ative to the true distributions) on independent test data even
if the selected subset is optimal for the given training data
[8]. This phenomenon, which is related to thecurse of di-
mensionality, is illustrated by running the feature selection

algorithm on varying amounts of training data drawn from
known distributions. Trunk [11] used the following simple
example to illustrate the curse of dimensionality. The two
multivariate Gaussian class-conditional densities, are given
below:

p(xj!1) � N (���; I) p(xj!2) � N (����; I) (1)

where

��� =
h

1p
1

1p
2

1p
3

� � �
it
: (2)

andI denotes the identity matrix. Note that for these class-
conditional densities, the optimald-feature subset is the first
d features.

Various size data sets, ranging from 10 to 5,000 train-
ing patterns per class, were generated from the two 20-
dimensional distributions (equations (1) and (2)). For each
training set size, five data sets were generated, and the re-
sults averaged. Thequality of each selected feature subset
was calculated by taking the number of commonalities in
the resulting subset when compared with the optimal subset
of the true distribution: features that were included in both
sets, and features that were excluded from both sets. This
count was divided by the number of dimensions, and that
value was averaged over values ofd from 1 to 19 inclusive
to give a final quality value for the set. Note that this value
is not a measure of the classification error, but a measure
of the difference between the subset produced by a feature
selection method and the ideal feature subset. The average
quality for each training set size for the branch andbound
and SFS methods is shown in Figure 3.
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Figure 3. Quality of selected feature subsets
as a function of the size of training data.

For this dataset, since the features are all independent
with identical variance, only the difference in means along
a feature axis is significant. Therefore, any feature selection
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Figure 4. Sample SAR images.

algorithm should perform well on such a simple classifi-
cation problem. Indeed, the curve for the SFS algorithm
closely matches that of the branch-and-bound algorithm.
Note that as expected, the quality of the feature subset for
small training sets is low, but improves as the training set
size increases.

5. Selection of Texture Features

We have applied various feature selection algorithms to
select the best subset of texture features for the problem
of land use classification using SAR (Synthetic Aperture
Radar) images (see Figure 4). Solberg and Jain [10] have
used texture features computed from SAR images to clas-
sify each pixel. A total of 18 features per pattern (pixel)
were computed from four different texture models: local
statistics (5 features), gray level co-ocurrence matrices (6
features), fractal features (2 features), and a lognormal ran-
dom field model (5 features). Our goal is to determine
whether the classification error can be reduced by applying
feature selection to this set of 18 features from four differ-
ent texture models. A similar feature selection study for 2D
shape features was reported by You and Jain [12].

We report results for one SAR image (the October 17
image from [10]), containing approximately 22,000 pixels.
This data was split evenly to form independent training and
test sets. The recognition rate of the 3NN classifier is used
as the feature selection criterion. Based on its consistently
high performance for the synthetic data in Section 3, we
chose to apply the SFFS method to the texture data set. The
results of these runs are shown in Figure 5.

The best recognition rate obtained bySFFS was 88.4%,
with an 11-feature subset. Notice that the recognition rate
does not monotonically increase as the number of features
is increased. The feature selection process is not just us-
ing the features derived from a single texture model but is
utilizing features from different models to provide a better
performance. For instance, in every run, the five-feature
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Figure 5. Recognition rates of SFS and SFFS
methods on texture feature data.

subset selected contained features from at least three differ-
ent texture models. The best individual texture model for
this data set was the random field model with a classifica-
tion accuracy of 68.8% [10]. Pooling features from four dif-
ferent models and then applying feature selection increased
the classification accuracy.

6. Selection of Handprinted Character
Features

We have also applied feature selection to aid the classifi-
cation of a subset of the NIST SD-3 handprinted character
set. The classes correspond to the 26 lowercase letters (see
Figure 6). A total of 2,439 patterns are used for training
and 1,525 are used for testing. The features used are the 88
contour direction features from Mohiuddin and Mao [5].

We again applied the SFFS algorithm to this data set.
While our best recognition rates (88.7% with 51 features us-
ing 1NN, 89.6% with 71 features using 3NN) did not reach
those reported by Mohiuddin and Mao [5] using different,
non-nearest neighbor-based classifier methods, this data set
illustrates one of the major advantages of performing fea-
ture selection—it can dramatically reduce the number of
features with only a small drop in recognition rate. For in-
stance, the 1NN recognition rate reaches 87.7% accuracy
using only 36 of the 88 features. Over half the features can
be culled from the data set for only a 1% drop in the recog-
nition rate!

7. Summary

This paper illustrates the merits of various methods of
feature selection. In particular, the practicality of finding
the optimal subsets in feature spaces of moderately high di-
mension using the branch-and-bound algorithm (where the



Figure 6. Sample handprinted characters.
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Figure 7. Recognition rates as a function of
feature subset size for character data.

monotonicity requirement for the criterion function is sat-
isfied), and the quality of the results given by the floating
search methods are illustrated. The floating search methods
show a great promise of being useful in situations where the
branch-and-bound method can not be used, due to either the
nonmonotonicity of the feature selection criterion or com-
putational reasons.

We also show the pitfalls of using feature selection with
limited training data. By using feature selection on a clas-
sification problem with known distributions and comparing
the selected subsets (under finite sample size) with the true
ideal subsets, the quality of the selected subset can be quan-
tified. Our experiments with the Trunk distributions show
the problems associated with sparse data in a high dimen-
sional space. Results on texture data show that feature se-

lection is useful in utilizing feature derived from different
texture models while at the same time avoiding the curse of
dimensionality. Experiments on handprinted character data
illustrate that a large number of feature can be eliminated
without a significant loss of classification performance.
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